51 resultados para moving object classification
Resumo:
Tämä diplomityökuuluu tietoliikenneverkkojen suunnittelun tutkimukseen ja pohjimmiltaan kohdistuu verkon mallintamiseen. Tietoliikenneverkkojen suunnittelu on monimutkainen ja vaativa ongelma, joka sisältää mutkikkaita ja aikaa vieviä tehtäviä. Tämä diplomityö esittelee ”monikerroksisen verkkomallin”, jonka tarkoitus on auttaa verkon suunnittelijoita selviytymään ongelmien monimutkaisuudesta ja vähentää verkkojen suunnitteluun kuluvaa aikaa. Monikerroksinen verkkomalli perustuu yleisille objekteille, jotka ovat yhteisiä kaikille tietoliikenneverkoille. Tämä tekee mallista soveltuvan mielivaltaisille verkoille, välittämättä verkkokohtaisista ominaisuuksista tai verkon toteutuksessa käytetyistä teknologioista. Malli määrittelee tarkan terminologian ja käyttää kolmea käsitettä: verkon jakaminen tasoihin (plane separation), kerrosten muodostaminen (layering) ja osittaminen (partitioning). Nämä käsitteet kuvataan yksityiskohtaisesti tässä työssä. Monikerroksisen verkkomallin sisäinen rakenne ja toiminnallisuus ovat määritelty käyttäen Unified Modelling Language (UML) -notaatiota. Tämä työ esittelee mallin use case- , paketti- ja luokkakaaviot. Diplomityö esittelee myös tulokset, jotka on saatu vertailemalla monikerroksista verkkomallia muihin verkkomalleihin. Tulokset osoittavat, että monikerroksisella verkkomallilla on etuja muihin malleihin verrattuna.
Resumo:
The purpose of this thesis is to present a new approach to the lossy compression of multispectral images. Proposed algorithm is based on combination of quantization and clustering. Clustering was investigated for compression of the spatial dimension and the vector quantization was applied for spectral dimension compression. Presenting algo¬rithms proposes to compress multispectral images in two stages. During the first stage we define the classes' etalons, another words to each uniform areas are located inside the image the number of class is given. And if there are the pixels are not yet assigned to some of the clusters then it doing during the second; pass and assign to the closest eta¬lons. Finally a compressed image is represented with a flat index image pointing to a codebook with etalons. The decompression stage is instant too. The proposed method described in this paper has been tested on different satellite multispectral images from different resources. The numerical results and illustrative examples of the method are represented too.
Resumo:
Työn tavoitteena oli kehittää tehtaan sisäisiä materiaalivirtoja layoutia muuttamalla ja materiaalinkäsittelyä parantamalla. Kehityksen seurauksena tulisi materiaalinkäsittelyn henkilökuntaa pystyä siirtämään tuotannon tehtäviin. Aluksi selvitettiin tehtaan toiminta, tuotteet ja prosessit, jonka jälkeen tehtiin layoutsuunnitteluun liittyvien teorioiden avulla kvantitatiivisia ja kvalitatiivisia arviointeja materiaalivirroista. Arvioinneissa havaittiin layoutsuunnittelun kannalta tärkeät asiat sekä yhteydet osastojen/työpisteiden välillä, mikä oli lähtökohtana uudelle layoutsuunnitelmalle. Työ oli kaksivaiheinen. Ensimmäisessä vaiheessa kehitettiin tehtaan nykyisiä materiaalivirtoja muuttamalla nykyistä layoutia ja parantamalla materiaalinkäsittelyä. Muutos pyrittiin pitämään hyvin kevyenä ja nykyiseen layoutiin tehtiin kaksi perusratkaisua. Kummassakin perusratkaisussa saadaan koneiden siirroilla materiaalivirtojen kannalta tärkeät koneet etusijalle sekä lisää tarvittavaa varastotilaa. Lisätilan saaminen varastoille vähentää myös tarpeetonta materiaalinkäsittelyä. Toisessa vaiheessa suunniteltiin layout laajennettuun tehdastilaan. Ensisijaisena tavoitteena oli logistinen toimivuus. Laajennuksen layoutsuunnitelmassa määritettiin kvantitatiivisten ja kvalitatiivisten arviointien avulla osastojen paikat ja koot sekä mietittiin kunkin osaston yksityiskohtaisessa suunnittelussa huomioon otettavia asioita. Suunnitelma on lähtökohtana yksityiskohtaisille suunnitelmille. Tärkeää layoutin suunnittelussa ja toteuttamisessa on huomioida layoutin käyttäjien eli työntekijöiden mielipiteet.
Resumo:
Internet on elektronisen postin perusrakenne ja ollut tärkeä tiedonlähde akateemisille käyttäjille jo pitkään. Siitä on tullut merkittävä tietolähde kaupallisille yrityksille niiden pyrkiessä pitämään yhteyttä asiakkaisiinsa ja seuraamaan kilpailijoitansa. WWW:n kasvu sekä määrällisesti että sen moninaisuus on luonut kasvavan kysynnän kehittyneille tiedonhallintapalveluille. Tällaisia palveluja ovet ryhmittely ja luokittelu, tiedon löytäminen ja suodattaminen sekä lähteiden käytön personointi ja seuranta. Vaikka WWW:stä saatavan tieteellisen ja kaupallisesti arvokkaan tiedon määrä on huomattavasti kasvanut viime vuosina sen etsiminen ja löytyminen on edelleen tavanomaisen Internet hakukoneen varassa. Tietojen hakuun kohdistuvien kasvavien ja muuttuvien tarpeiden tyydyttämisestä on tullut monimutkainen tehtävä Internet hakukoneille. Luokittelu ja indeksointi ovat merkittävä osa luotettavan ja täsmällisen tiedon etsimisessä ja löytämisessä. Tämä diplomityö esittelee luokittelussa ja indeksoinnissa käytettävät yleisimmät menetelmät ja niitä käyttäviä sovelluksia ja projekteja, joissa tiedon hakuun liittyvät ongelmat on pyritty ratkaisemaan.
Resumo:
The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.
Resumo:
This work proposes a method of visualizing the trend of research in the field of ceramic membranes from 1999 to 2006. The presented approach involves identifying problems encountered during research in the field of ceramic membranes. Patents from US patent database and articles from Science Direct(& by ELSEVIER was analyzed for this work. The identification of problems was achieved with software Knowledgist which focuses on the semantic nature of a sentence to generate series of subject action object structures. The identified problems are classified into major research issues. This classification was used for the visualization of the intensity of research. The image produced gives the relation between the number of patents, with time and the major research issues. The identification of the most cited papers which strongly influence the research of the previously identified major issues in the given field was also carried out. The relations between these papers are presented using the metaphor of social network. The final result of this work are two figures, a diagram showing the change in the studied problems a specified period of time and a figure showing the relations between the major papers and groups of the problems
Resumo:
Sensor-based robot control allows manipulation in dynamic environments with uncertainties. Vision is a versatile low-cost sensory modality, but low sample rate, high sensor delay and uncertain measurements limit its usability, especially in strongly dynamic environments. Force is a complementary sensory modality allowing accurate measurements of local object shape when a tooltip is in contact with the object. In multimodal sensor fusion, several sensors measuring different modalities are combined to give a more accurate estimate of the environment. As force and vision are fundamentally different sensory modalities not sharing a common representation, combining the information from these sensors is not straightforward. In this thesis, methods for fusing proprioception, force and vision together are proposed. Making assumptions of object shape and modeling the uncertainties of the sensors, the measurements can be fused together in an extended Kalman filter. The fusion of force and visual measurements makes it possible to estimate the pose of a moving target with an end-effector mounted moving camera at high rate and accuracy. The proposed approach takes the latency of the vision system into account explicitly, to provide high sample rate estimates. The estimates also allow a smooth transition from vision-based motion control to force control. The velocity of the end-effector can be controlled by estimating the distance to the target by vision and determining the velocity profile giving rapid approach and minimal force overshoot. Experiments with a 5-degree-of-freedom parallel hydraulic manipulator and a 6-degree-of-freedom serial manipulator show that integration of several sensor modalities can increase the accuracy of the measurements significantly.
Resumo:
Software testing is one of the essential parts in software engineering process. The objective of the study was to describe software testing tools and the corresponding use. The thesis contains examples of software testing tools usage. The study was conducted as a literature study, with focus on current software testing practices and quality assurance standards. In the paper a tool classifier was employed, and testing tools presented in study were classified according to it. We found that it is difficult to distinguish current available tools by certain testing activities as many of them contain functionality that exceeds scopes of a single testing type.
Resumo:
The purpose of this study is to view credit risk from the financier’s point of view in a theoretical framework. Results and aspects of the previous studies regarding measuring credit risk with accounting based scoring models are also examined. The theoretical framework and previous studies are then used to support the empirical analysis which aims to develop a credit risk measure for a bank’s internal use or a risk management tool for a company to indicate its credit risk to the financier. The study covers a sample of Finnish companies from 12 different industries and four different company categories and employs their accounting information from 2004 to 2008. The empirical analysis consists of six stage methodology process which uses measures of profitability, liquidity, capital structure and cash flow to determine financier’s credit risk, define five significant risk classes and produce risk classification model. The study is confidential until 15.10.2012.
Resumo:
This study presents the information required to describe the machine and device resources in the turret punch press environment which are needed for the development of the analysing method for automated production. The description of product and device resources and their interconnectedness is the starting point for method comparison the development of expenses, production planning and the performance of optimisation. The manufacturing method cannot be optimized unless the variables and their interdependence are known. Sheet metal parts in particular may then become remarkably complex, and their automatic manufacture may be difficult or, with some automatic equipment, even impossible if not know manufacturing properties. This thesis consists of three main elements, which constitute the triangulation. In the first phase of triangulation, the manufacture occuring on a turret punch press is examined in order to find the factors that affect the efficiency of production. In the second phase of triangulation, the manufacturability of products on turret punch presses is examined through a set of laboratory tests. The third phase oftriangulation involves an examination of five industry parts. The main key findings of this study are: all possible efficiency in high automation level machining cannot be achieved unless the raw materials used in production and the dependencies of the machine and tools are well known. Machine-specific manufacturability factors for turret punch presses were not taken into account in the industrial case samples. On the grounds of the performed tests and industrial case samples, the designer of a sheet metal product can directly influence the machining time, material loss, energy consumption and the number of tools required on a turret punch press by making decisions in the way presented in the hypothesis of thisstudy. The sheet metal parts to be produced can be optimised to bemanufactured on a turret punch press when the material to be used and the kinds of machine and tool options available are known. This provides in-depth knowledge of the machine and tool properties machine and tool-specifically. None of the optimisation starting points described here is a separate entity; instead, they are all connected to each other.
Resumo:
Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.
Resumo:
Female sexual dysfunctions, including desire, arousal, orgasm and pain problems, have been shown to be highly prevalent among women around the world. The etiology of these dysfunctions is unclear but associations with health, age, psychological problems, and relationship factors have been identified. Genetic effects explain individual variation in orgasm function to some extent but until now quantitative behavior genetic analyses have not been applied to other sexual functions. In addition, behavior genetics can be applied to exploring the cause of any observed comorbidity between the dysfunctions. Discovering more about the etiology of the dysfunctions may further improve the classification systems which are currently under intense debate. The aims of the present thesis were to evaluate the psychometric properties of a Finnish-language version of a commonly used questionnaire for measuring female sexual function, the Female Sexual Function Index (FSFI), in order to investigate prevalence, comorbidity, and classification, and to explore the balance of genetic and environmental factors in the etiology as well as the associations of a number of biopsychosocial factors with female sexual functions. Female sexual functions were studied through survey methods in a population based sample of Finnish twins and their female siblings. There were two waves of data collection. The first data collection targeted 5,000 female twins aged 33–43 years and the second 7,680 female twins aged 18–33 and their over 18–year-old female siblings (n = 3,983). There was no overlap between the data collections. The combined overall response rate for both data collections was 53% (n = 8,868), with a better response rate in the second (57%) compared to the first (45%). In order to measure female sexual function, the FSFI was used. It includes 19 items which measure female sexual function during the previous four weeks in six subdomains; desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain. In line with earlier research in clinical populations, a six factor solution of the Finnish-language version of the FSFI received supported. The internal consistencies of the scales were good to excellent. Some questions about how to avoid overestimating the prevalence of extreme dysfunctions due to women being allocated the score of zero if they had had no sexual activity during the preceding four weeks were raised. The prevalence of female sexual dysfunctions per se ranged from 11% for lubrication dysfunction to 55% for desire dysfunction. The prevalence rates for sexual dysfunction with concomitant sexual distress, in other words, sexual disorders were notably lower ranging from 7% for lubrication disorder to 23% for desire disorder. The comorbidity between the dysfunctions was substantial most notably between arousal and lubrication dysfunction even if these two dysfunctions showed distinct patterns of associations with the other dysfunctions. Genetic influences on individual variation in the six subdomains of FSFI were modest but significant ranging from 3–11% for additive genetic effects and 5–18% for nonadditive genetic effects. The rest of the variation in sexual functions was explained by nonshared environmental influences. A correlated factor model, including additive and nonadditive genetic effects and nonshared environmental effects had the best fit. All in all, every correlation between the genetic factors was significant except between lubrication and pain. All correlations between the nonshared environment factors were significant showing that there is a substantial overlap in genetic and nonshared environmental influences between the dysfunctions. In general, psychological problems, poor satisfaction with the relationship, sexual distress, and poor partner compatibility were associated with more sexual dysfunctions. Age was confounded with relationship length but had over and above relationship length a negative effect on desire and sexual satisfaction and a positive effect on orgasm and pain functions. Alcohol consumption in general was associated with better desire, arousal, lubrication, and orgasm function. Women pregnant with their first child had fewer pain problems than nulliparous nonpregnant women. Multiparous pregnant women had more orgasm problems compared to multiparous nonpregnant women. Having children was associated with less orgasm and pain problems. The conclusions were that desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain are separate entities that have distinct associations with a number of different biopsychosocial factors. However, there is also considerable comorbidity between the dysfunctions which are explained by overlap in additive genetic, nonadditive genetic and nonshared environmental influences. Sexual dysfunctions are highly prevalent and are not always associated with sexual distress and this relationship might be moderated by a good relationship and compatibility with partner. Regarding classification, the results supports separate diagnoses for subjective arousal and genital arousal as well as the inclusion of pain under sexual dysfunctions.
Resumo:
The large and growing number of digital images is making manual image search laborious. Only a fraction of the images contain metadata that can be used to search for a particular type of image. Thus, the main research question of this thesis is whether it is possible to learn visual object categories directly from images. Computers process images as long lists of pixels that do not have a clear connection to high-level semantics which could be used in the image search. There are various methods introduced in the literature to extract low-level image features and also approaches to connect these low-level features with high-level semantics. One of these approaches is called Bag-of-Features which is studied in the thesis. In the Bag-of-Features approach, the images are described using a visual codebook. The codebook is built from the descriptions of the image patches using clustering. The images are described by matching descriptions of image patches with the visual codebook and computing the number of matches for each code. In this thesis, unsupervised visual object categorisation using the Bag-of-Features approach is studied. The goal is to find groups of similar images, e.g., images that contain an object from the same category. The standard Bag-of-Features approach is improved by using spatial information and visual saliency. It was found that the performance of the visual object categorisation can be improved by using spatial information of local features to verify the matches. However, this process is computationally heavy, and thus, the number of images must be limited in the spatial matching, for example, by using the Bag-of-Features method as in this study. Different approaches for saliency detection are studied and a new method based on the Hessian-Affine local feature detector is proposed. The new method achieves comparable results with current state-of-the-art. The visual object categorisation performance was improved by using foreground segmentation based on saliency information, especially when the background could be considered as clutter.