54 resultados para Virtual sensor, swarm robotics, simulator, tracking system.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Resumo:
The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.
Resumo:
Recent advances in Information and Communication Technology (ICT), especially those related to the Internet of Things (IoT), are facilitating smart regions. Among many services that a smart region can offer, remote health monitoring is a typical application of IoT paradigm. It offers the ability to continuously monitor and collect health-related data from a person, and transmit the data to a remote entity (for example, a healthcare service provider) for further processing and knowledge extraction. An IoT-based remote health monitoring system can be beneficial in rural areas belonging to the smart region where people have limited access to regular healthcare services. The same system can be beneficial in urban areas where hospitals can be overcrowded and where it may take substantial time to avail healthcare. However, this system may generate a large amount of data. In order to realize an efficient IoT-based remote health monitoring system, it is imperative to study the network communication needs of such a system; in particular the bandwidth requirements and the volume of generated data. The thesis studies a commercial product for remote health monitoring in Skellefteå, Sweden. Based on the results obtained via the commercial product, the thesis identified the key network-related requirements of a typical remote health monitoring system in terms of real-time event update, bandwidth requirements and data generation. Furthermore, the thesis has proposed an architecture called IReHMo - an IoT-based remote health monitoring architecture. This architecture allows users to incorporate several types of IoT devices to extend the sensing capabilities of the system. Using IReHMo, several IoT communication protocols such as HTTP, MQTT and CoAP has been evaluated and compared against each other. Results showed that CoAP is the most efficient protocol to transmit small size healthcare data to the remote servers. The combination of IReHMo and CoAP significantly reduced the required bandwidth as well as the volume of generated data (up to 56 percent) compared to the commercial product. Finally, the thesis conducted a scalability analysis, to determine the feasibility of deploying the combination of IReHMo and CoAP in large numbers in regions in north Sweden.
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
In modern society, the body health is a very important issue to everyone. With the development of the science and technology, the new and developed body health monitoring device and technology will play the key role in the daily medical activities. This paper focus on making progress in the design of the wearable vital sign system. A vital sign monitoring system has been proposed and designed. The whole detection system is composed of signal collecting subsystem, signal processing subsystem, short-range wireless communication subsystem and user interface subsystem. The signal collecting subsystem is composed of light source and photo diode, after emiting light of two different wavelength, the photo diode collects the light signal reflected by human body tissue. The signal processing subsystem is based on the analog front end AFE4490 and peripheral circuits, the collected analog signal would be filtered and converted into digital signal in this stage. After a series of processing, the signal would be transmitted to the short-range wireless communication subsystem through SPI, this subsystem is mainly based on Bluetooth 4.0 protocol and ultra-low power System on Chip(SoC) nRF51822. Finally, the signal would be transmitted to the user end. After proposing and building the system, this paper focus on the research of the key component in the system, that is, the photo detector. Based on the study of the perovskite materials, a low temperature processed photo detector has been proposed, designed and researched. The device is made up of light absorbing layer, electron transporting and hole blocking layer, hole transporting and electron blocking layer, conductive substrate layer and metal electrode layer. The light absorbing layer is the important part of whole device, and it is fabricated by perovskite materials. After accepting the light, the electron-hole pair would be produced in this layer, and due to the energy level difference, the electron and hole produced would be transmitted to metal electrode and conductive substrate electrode through electron transporting layer and hole transporting layer respectively. In this way the response current would be produced. Based on this structure, the specific fabrication procedure including substrate cleaning; PEDOT:PSS layer preparation; pervoskite layer preparation; PCBM layer preparation; C60, BCP, and Ag electrode layer preparation. After the device fabrication, a series of morphological characterization and performance testing has been done. The testing procedure including film-forming quality inspection, response current and light wavelength analysis, linearity and response time and other optical and electrical properties testing. The testing result shows that the membrane has been fabricated uniformly; the device can produce obvious response current to the incident light with the wavelength from 350nm to 800nm, and the response current could be changed along with the light wavelength. When the light wavelength keeps constant, there exists a good linear relationship between the intensity of the response current and the power of the incident light, based on which the device could be used as the photo detector to collect the light information. During the changing period of the light signal, the response time of the device is several microseconds, which is acceptable working as a photo detector in our system. The testing results show that the device has good electronic and optical properties, and the fabrication procedure is also repeatable, the properties of the devices has good uniformity, which illustrates the fabrication method and procedure could be used to build the photo detector in our wearable system. Based on a series of testing results, the paper has drawn the conclusion that the photo detector fabricated could be integrated on the flexible substrate and is also suitable for the monitoring system proposed, thus made some progress on the research of the wearable monitoring system and device. Finally, some future prospect in system design aspect and device design and fabrication aspect are proposed.
Resumo:
This project focuses on studying and testing the benefits of the NX Remote Desktop technology in administrative use for Finnish Meteorological Institutes existing Linux Terminal Service Project environment. This was done due to the criticality of the system caused by growing number of users as the Linux Terminal Service Project system expands. Although many of the supporting tasks can be done via Secure Shell connection, testing graphical programs or desktop behaviour in such a way is impossible. At first basic technologies behind the NX Remote Desktop were studied, and after that started the testing of two possible programs, FreeNX and NoMachine NX server. Testing the functionality and bandwidth demands were first done in a closed local area network, and results were studied. The better candidate was then installed in a virtual server simulating actual Linux Terminal Service Project server at Finnish Meteorological Institute and connection from Internet was tested to see was there any problems with firewalls and security policies. The results are reported in this study. Studying and testing the two different candidates of NX Remote Desktop showed, that NoMachine NX Server provides better customer support and documentation. Security aspects of the Finnish Meteorological Institute had also to be considered, and since updates along with the new developing tools are announced in next version of the program, this version was the choice. Studies also show that even NoMachine promises a swift connection over an average of 20Kbit/s bandwidth, at least double of that is needed. This project gives an overview of available remote desktop products along their benefits. NX Remote Desktop technology is studied, and installation instructions are included. Testing is done in both, closed and the actual environment and problems and suggestions are studied and analyzed. The installation to the actual LTSP server is not yet made, but a virtual server is put up in the same place in the view of network topology. This ensures, that if the administrators are satisfied with the system, installation and setting up the system will go as described in this report.
Resumo:
Line converters have become an attractive AC/DC power conversion solution in industrial applications. Line converters are based on controllable semiconductor switches, typically insulated gate bipolar transistors. Compared to the traditional diode bridge-based power converters line converters have many advantageous characteristics, including bidirectional power flow, controllable de-link voltage and power factor and sinusoidal line current. This thesis considers the control of the lineconverter and its application to power quality improving. The line converter control system studied is based on the virtual flux linkage orientation and the direct torque control (DTC) principle. A new DTC-based current control scheme is introduced and analyzed. The overmodulation characteristics of the DTC converter are considered and an analytical equation for the maximum modulation index is derived. The integration of the active filtering features to the line converter isconsidered. Three different active filtering methods are implemented. A frequency-domain method, which is based on selective harmonic sequence elimination, anda time-domain method, which is effective in a wider frequency band, are used inharmonic current compensation. Also, a voltage feedback active filtering method, which mitigates harmonic sequences of the grid voltage, is implemented. The frequency-domain and the voltage feedback active filtering control systems are analyzed and controllers are designed. The designs are verified with practical measurements. The performance and the characteristics of the implemented active filtering methods are compared and the effect of the L- and the LCL-type line filteris discussed. The importance of the correct grid impedance estimate in the voltage feedback active filter control system is discussed and a new measurement-based method to obtain it is proposed. Also, a power conditioning system (PCS) application of the line converter is considered. A new method for correcting the voltage unbalance of the PCS-fed island network is proposed and experimentally validated.
Resumo:
In the drilling processes and especially deep-hole drilling process, the monitoring system and having control on mechanical parameters (e.g. Force, Torque,Vibration and Acoustic emission) are essential. The main focus of this thesis work is to study the characteristics of deep-hole drilling process, and optimize the monitoring system for controlling the process. The vibration is considered as a major defect area of the deep-hole drilling process which often leads to breakage of the drill, therefore by vibration analysis and optimizing the workpiecefixture, this area is studied by finite element method and the suggestions are explained. By study on a present monitoring system, and searching on the new sensor products, the modifications and recommendations are suggested for optimize the present monitoring system for excellent performance in deep-hole drilling process research and measurements.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
Diplomityössä tutkittiin hydrauliikan reaaliaikasimulointia ja sen mahdollisuuksia tuotekehityksen apuvälineenä. Työssä käytettiin dSPACE:n reaaliaikasimulointiin valmistamia laitteita ja ohjelmia. Työssä luotiin Matlab/Simulink –ympäristöön tyypillisimmistä hydrauliikkakomponenttien puoliempiirisistä malleista koostuva komponenttikirjasto, joista kootut hydrauliikkapiirien mallit voitiin kääntää reaaliaikaympäristöön. Työn tavoitteena oli kehittää menetelmä, jonka avulla voidaan nopeuttaa ja helpottaa hydraulismekaanisten konejärjestelmien suunnittelua ja tuotekehitystä. Kehitetyt menetelmät perustuvat todellisen konejärjestelmän osaksi kytketyn reaaliaikaisen virtuaalihydrauliikan avulla laskettuun uuteen ohjaussignaaliin, jonka avulla voidaan todellisella hydrauliikalla kuvata virtuaalisen hydrauliikan vaikutukset todelliseen järjestelmään. Näin ollen muutokset voidaan siis tehdä virtuaaliseen hydrauliikkaan ja niiden vaikutukset nähdä todellisen järjestelmän käyttäytymisessä.
Resumo:
Kustannuspaineet, tuotteiden laatuvaatimukset ja lisääntyvässä määrin myös ammattitaitoisen työvoiman pula lisäävät robotisoinnin käyttötarvetta hitsauksessa. Tämä työ on tehty edellä mainituista lähtökohdista ja käsittelee robottihitsausjärjestelmän suunnitteluprojektia, joustavaa hitsausautomaatiota ja robotiikan soveltamista. Näkökohtana on Savonia-ammattikorkeakoulun sekä Pohjois-Savon alueen yritysten tutkimus-, kehitys- ja koulutustoiminnan tarpeet. Joustavuus on hitsausjärjestelmän päätavoite, jolla pyritään vastaamaan asiakasohjautuvan yksittäis- ja piensarjatuotannon haasteisiin. Ratkaisua yksittäis- ja piensarjatuotteiden kokonaistaloudelliseen hitsaukseen on haettu hitsausrobotin rinnalle lisätyllä apurobotilla, jonka päätehtävä on kappaleenkäsittely, mutta sitä voidaan käyttää myös mm. robotisoituun leikkauksen ja särmäykseen. Tavallisuudesta poikkeavaa järjestelmäratkaisua on perusteltu sillä, että ohjaus- ja ohjelmointitekniikan sekä kehittyneen anturoinnin myötä on robottien käytettävyys parantunut ja aiempaa haasteellisempien robottijärjestelmien toteuttaminen on tullut näin mahdolliseksi. Lisäksi virtuaalimallinnus, simulointi ja etäohjelmointi ovat työkaluja, joita voidaan käyttää mm. tuotannon laadun ja tehokkuuden parantamiseen. Työssä esitetty robottiaseman suunnittelu alkaa järjestelmän määrittelystä, vaatimuslistan laadinnasta sekä visioinnista ja päättyy kolmen järjestelmävaihtoehdon vertailuun. Esitetyillä järjestelmävaihtoehdoilla on haettu mahdollisuutta yhdistää yleensä erillisinä toteutettuja työvaiheita yhteiseen soluun. Tuotannon joustavuus on ollut tuotantokapasiteettia tärkeämpi laitteistokokoonpanon valintaperuste.
Resumo:
Simulaattorit ovat yksinkertaistettuja malleja tietyistä järjestelmän osioista. Niitä käytetään mallintamaan testattavan osion ympärillä olevien muiden osioiden ulkoista toimintaa, jotta testattavalle osiolle saadaan oikeanlainen toimintaympäristö aikaiseksi. Tilakoneita käytetään mallintamaan ohjelmistojen tai niiden osien toimintaa. Sanomaohjatuissa tilakoneissa tilojen vaihdot perustuvat saapuviin sanomiin. Tässä työssä esitellään erään ohjelmiston alijärjestelmän testaamisessa käytettävä arkkitehtuuri, joka perustuu suurelta osin simulaattoreiden käyttöön muiden alijärjestelmien mallintamisessa. Testattava ohjelmisto koostuu enimmäkseen tilakoneista, jotka vaihtavat keskenään sanomia ja ohjaavat näin toistensa tilasiirtymiä. Työn testausympäristö on suunniteltu juuri tämänkaltaisen ohjelmiston testaamiseen. Työssä esiteltävää testausympäristöä myöskin käytettiin useamman kuukauden ajan ja se todettiin toimivaksi. Joitakin testausympäristön käyttöohjeita, käyttökokemuksia sekä siihen liittyviä parannusehdotuksia käydään läpi työn loppuosassa. Erityisesti havaittiin miten tärkeää on testata implementaatiota jo luokka tasolla ennen alijärjestelmä tason testaukseen siirtymistä sekä päädyttiin siihen, että suunnitteluvaiheen pitäisi olla lähemmin liitoksissa alijärjestelmätestaukseen.
Resumo:
This thesis seeks to answer, if communication challenges in virtual teams can be overcome with the help of computer-mediated communication. Virtual teams are becoming more common work method in many global companies. In order for virtual teams to reach their maximum potential, effective asynchronous and synchronous methods for communication are needed. The thesis covers communication in virtual teams, as well as leadership and trust building in virtual environments with the help of CMC. First, the communication challenges in virtual teams are identified by using a framework of knowledge sharing barriers in virtual teams by Rosen et al. (2007) Secondly, the leadership and trust in virtual teams are defined in the context of CMC. The performance of virtual teams is evaluated in the case study by exploiting these three dimensions. With the help of a case study of two virtual teams, the practical issues related to selecting and implementing communication technologies as well as overcoming knowledge sharing barriers is being discussed. The case studies involve a complex inter-organisational setting, where four companies are working together in order to maintain a new IT system. The communication difficulties are related to inadequate communication technologies, lack of trust and the undefined relationships of the stakeholders and the team members. As a result, it is suggested that communication technologies are needed in order to improve the virtual team performance, but are not however solely capable of solving the communication challenges in virtual teams. In addition, suitable leadership and trust between team members are required in order to improve the knowledge sharing and communication in virtual teams.
Resumo:
Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.
Resumo:
In the thesis the principle of work of eddy current position sensors and the main cautions that must be taken into account while sensor design process are explained. A way of automated eddy current position sensor electrical characteristics measurement is suggested. A prototype of the eddy current position sensor and its electrical characteristics are investigated. The results obtained by means of the automated measuring system are explained.