29 resultados para Selective Breeding
Resumo:
In development of human medicines, it is important to predict early and accurately enough the disease and patient population to be treated as well as the effective and safe dose range of the studied medicine. This is pursued by using preclinical research models, clinical pharmacology and early clinical studies with small sample sizes. When successful, this enables effective development of medicines and reduces unnecessary exposure of healthy subjects and patients to ineffectice or harmfull doses of experimental compounds. Toremifene is a selective estrogen receptor modulator (SERM) used for treatment of breast cancer. Its development was initiated in 1980s when selection of treatment indications and doses were based on research in cell and animal models and on noncomparative clinical studies including small number of patients. Since the early development phase, the treatment indication, the patient population and the dose range were confirmed in large comparative clinical studies in patients. Based on the currently available large and long term clinical study data the aim of this study was to investigate how the early phase studies were able to predict the treatment indication, patient population and the dose range of the SERM. As a conclusion and based on the estrogen receptor mediated mechanism of action early studies were able to predict the treatment indication, target patient population and a dose range to be studied in confirmatory clinical studies. However, comparative clinical studies are needed to optimize dose selection of the SERM in treatment of breast cancer.
Resumo:
Att övervaka förekomsten av giftiga komponenter i naturliga vattendrag är nödvändigt för människans välmående. Eftersom halten av föroreningar i naturens ekosystem bör hållas möjligast låg, pågår en ständig jakt efter kemiska analysmetoder med allt lägre detektionsgränser. I dagens läge görs miljöanalyser med dyr och sofistikerad instrumentering som kräver mycket underhåll. Jonselektiva elektroder har flera goda egenskaper som t.ex. bärbarhet, låg energiförbrukning, och dessutom är de relativt kostnadseffektiva. Att använda jonselektiva elektroder vid miljöanalyser är möjligt om deras känslighetsområde kan utvidgas genom att sänka deras detektionsgränser. För att sänka detektionsgränsen för Pb(II)-selektiva elektroder undersöktes olika typer av jonselektiva membran som baserades på polyakrylat-kopolymerer, PVC och PbS/Ag2S. Fast-fas elektroder med membran av PbS/Ag2S är i allmänhet enklare och mer robusta än konventionella elektroder vid spårämnesanalys av joniska föroreningar. Fast-fas elektrodernas detektionsgräns sänktes i detta arbete med en nyutvecklad galvanostatisk polariseringsmetod och de kunde sedan framgångsrikt användas för kvantitativa bestämningar av bly(II)-halter i miljöprov som hade samlats in i den finska skärgården nära tidigare industriområden. Analysresultaten som erhölls med jonselektiva elektroder bekräftades med andra analytiska metoder. Att sänka detektionsgränsen m.hj.a. den nyutvecklade polariseringsmetoden möjliggör bestämning av låga och ultra-låga blyhalter som inte kunde nås med klassisk potentiometri. Den verkliga fördelen med att använda dessa blyselektiva elektroder är möjligheten att utföra mätningar i obehandlade miljöprov trots närvaron av fasta partiklar vilket inte är möjligt att göra med andra analysmetoder. Jag väntar mig att den nyutvecklade polariseringsmetoden kommer att sätta en trend i spårämnesanalys med jonselektiva elektroder.
Resumo:
The impact of menopausal hormone therapy (MHT) on increasing the risk for breast cancer (BC) remains controversial. To understand MHT-elicited cellular breast effects and the potential risks, included with using this therapy, a further investigation into this controversy is the subject of this thesis. In this thesis, to study the effects of estrogen, progestin, androgens and selective estrogen receptor modulators (SERMs), a modified tissue explant culture system was used. The different types of human breast tissues (HBTs) used in this study were normal HBTs, obtained from reduction mammoplasties of premenopausal women (prem-HBTs) or postmenopausal (postm-HBTs) women and peritumoral HBTs (peritum-HBTs) which were obtained from surgeries on postmenopausal BC patients. The explants were cultured up to three weeks in the presence or absence of estradiol (E2), medroxyprogesterone acetate (MPA), testosterone (T), dihydrotestosterone (DHT) and SERMs - ospemifene (OSP), raloxifene (RAL) and tamoxifen (TAM). The cultured HBTs maintained morphological integrity and responded to hormonal treatment in vitro. E2, MPA or E2/MPA increased proliferative activity and was associated with increased cyclin-D1 and caused changes in the cell cycle inhibitors p21 and p27, whereas the androgens T and DHT inhibited proliferation and increased apoptosis in HBT epithelia and opposed E2-stimulated proliferation and cell survival. The postm-HBTs were more sensitive to E2 than prem-HBTs. The effects of OSP, RAL and TAM on HBT epithelium were antiproliferative. E2, androgens and SERMs were associated with marked changes in the proportions of epithelial cells expressing steroid hormone receptors: E2 increased ERα expressing cells and decreased androgen receptor (AR) positive cells, whereas T and DHT had opposite effects. The OSP, RAL and TAM, also decreased a proportion of ERα positive cells in HBT epithelium. At 100 nM, these compounds maintained the relative number of AR positive cells, present at control level, which may partly explain proliferative inhibition. In conclusion, the proliferative activity of E2, in the epithelium of postm-HBTs, is opposed by T and DHT, which suggests that the inclusion of androgens in MHT may decrease the risk for developing BC.
Resumo:
The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.
Resumo:
Tankyrases belong to the Diphtheria toxin-like ADP-ribosyltransferase (ARTD) enzyme superfamily, also known as poly(ADP-ribose) polymerases (PARPs). They catalyze a covalent post-translational modification reaction where they transfer ADP-ribose units from NAD+ to target proteins. Tankyrases are involved in many cellular processes and their roles in telomere homeostasis, Wnt signaling and in several diseases including cancers have made them interesting drug targets. In this thesis project, selective inhibition of human tankyrases was studied. A homogeneous fluorescence-based assay was developed to screen the compound libraries. The assay is inexpensive, operationally easy, and performs well according to the statistical analysis. Assay suitability was confirmed by screening a natural product library. Flavone was identified as the most potent inhibitor in the library and this motivated us to screen a larger flavonoid library. Results showed that flavones were indeed the best inhibitor of tankyrases among flavonoids. To further study the structure-activity relationship, a small library of flavones containing single substitution was screened and potency measurements allowed us to generate structure-activity relationship. Compounds containing substitutions at 4´-position were more potent in comparison to other substitutions, and importantly, hydrophobic groups improved isoenzyme selectivity as well as the potency. A flavone derivative containing a hydrophobic isopropyl group (compound 22), displayed 6 nM potency against TNKS1, excellent isoenzyme selectivity and Wnt signaling inhibition. Protein interactions with compounds were studied by solving complex crystal structures of the compounds with TNKS2 catalytic domain. A novel tankyrase inhibitor (IWR-1) was also crystallized in complex with TNKS2 catalytic domain. The crystal structure of TNKS2 in complex with IWR-1 showed that the compound binds to adenosine site and it was the first known ARTD inhibitor of this kind. To date, there is no structural information available about the substrate binding with any of the ARTD family members; therefore NAD+ was soaked with TNKS2 catalytic domain crystals. However, analysis of crystal structure showed that NAD+ was hydrolyzed to nicotinamide. Also, a co-crystal structure of NAD+ mimic compound, EB-47, was solved which was used to deduce some insights about the substrate interactions with the enzyme. Like EB-47, other ARTD1 inhibitors were also shown to inhibit tankyrases. It indicated that selectivity of the ARTD1 inhibitors should be considered as some of the effects in cells could come from tankyrase inhibition. In conclusion, the study provides novel information on tankyrase inhibition and presents new insight into the selectivity and potency of compounds.
Resumo:
Depletion of high grade mineral resources, tightening of environmental regulations and the environmental impact of acid mine drainage caused by sulfidic minerals continuously increase the interest in processing tailings and other mine waste. Treating waste requires additional capital and operational input, but the decrease in size and need of tailings ponds and permits decrease the overall costs. Treatment and utilization of the tailings could also bring added revenue by the recovery of valuables. Leaching of metal sulfides is very demanding and time consuming and hence process conditions need to be carefully optimized. The leaching of sulfides is affected by for example the choice of leaching agent, its concentration and temperature, pH, the redox potential, pressure, pulp density and particle size distribution. With reference to the mine case study the leaching of nickel and copper sulfides, especially the primary minerals pentlandite and chalcopyrite were investigated. Leaching behavior and recoveries for nickel, copper and iron were found out by sulfuric and citric acid leaching experiments using tailings samples of high and low sulfur content. Moderate recoveries were obtained and citric acid seemed more attractive. Increase in temperature and decrease in pulp density had positive effect on the recovery and pH was also proven to have a significant effect on the recovery of valuables. The rate determining step was determined through kinetic modeling in case of all valuables separately. Leaching was controlled by diffusion. The investigated multimetal tailing showed moderate potential in recovering of metal valuables from low grade tailing deposits. The process conditions should however be further optimized.
Resumo:
Additive manufacturing is a fast growing manufacturing technology capable of producing complex objects without the need for conventional manufacturing process planning. During the process the work piece is built by adding material one layer at a time according to a digital 3D CAD model. At first additive manufacturing was mainly used to make prototypes but the development of the technology has made it possible to also make final products. Welding is the most common joining method for metallic materials. As the maximum part size of additive manufacturing is often limited, it may sometimes be required to join two or more additively manufactured parts together. However there has been almost no research on the welding of additively manufactured parts so far, which means that there has been very little information available on the possible differences compared to the welding of sheet metal parts. The aim of this study was to compare the weld joint properties of additively manufactured parts to those of sheet metal parts. The welding process that was used was TIG welding and the test material was 316L austenitic stainless steel. Weld joint properties were studied by making tensile, bend and hardness tests and by studying the weld microstructures with a microscope. Results show that there are certain characteristics in the welds of additively manufactured parts. The building direction of the test pieces has some impact on the mechanical properties of the weld. Nevertheless all the welds exhibited higher yield strength than the sheet metal welds but at the same time elongation at break was lower. It was concluded that TIG welding is a feasible process for welding additively manufactured parts.
Resumo:
Potentiometric sensors are very attractive tools for chemical analysis because of their simplicity, low power consumption and low cost. They are extensively used in clinical diagnostics and in environmental monitoring. Modern applications of both fields require improvements in the conventional construction and in the performance of the potentiometric sensors, as the trends are towards portable, on-site diagnostics and autonomous sensing in remote locations. The aim of this PhD work was to improve some of the sensor properties that currently hamper the implementation of the potentiometric sensors in modern applications. The first part of the work was concentrated on the development of a solid-state reference electrode (RE) compatible with already existing solid-contact ion-selective electrodes (ISE), both of which are needed for all-solid-state potentiometric sensing systems. A poly(vinyl chloride) membrane doped with a moderately lipophilic salt, tetrabutylammonium-tetrabutylborate (TBA-TBB), was found to show a satisfactory stability of potential in sample solutions with different concentrations. Its response time was nevertheless slow, as it required several minutes to reach the equilibrium. The TBA-TBB membrane RE worked well together with solid-state ISEs in several different situations and on different substrates enabling a miniature design. Solid contacts (SC) that mediate the ion-to-electron transduction are crucial components of well-functioning potentiometric sensors. This transduction process converting the ionic conduction of an ion-selective membrane to the electronic conduction in the circuit was studied with the help of electrochemical impedance spectroscopy (EIS). The solid contacts studied were (i) the conducting polymer (CP) poly(3,4-ethylienedioxythiophene) (PEDOT) and (ii) a carbon cloth having a high surface area. The PEDOT films were doped with a large immobile anion poly(styrene sulfonate) (PSS-) or with a small mobile anion Cl-. As could be expected, the studied PEDOT solid-contact mediated the ion-toelectron transduction more efficiently than the bare glassy carbon substrate, onto which they were electropolymerized, while the impedance of the PEDOT films depended on the mobility of the doping ion and on the ions in the electrolyte. The carbon cloth was found to be an even more effective ion-to-electron transducer than the PEDOT films and it also proved to work as a combined electrical conductor and solid contact when covered with an ion-selective membrane or with a TBA-TBB-based reference membrane. The last part of the work was focused on improving the reproducibility and the potential stability of the SC-ISEs, a problem that culminates to the stability of the standard potential E°. It was proven that the E° of a SC-ISE with a conducting polymer as a solid contact could be adjusted by reducing or oxidizing the CP solid contact by applying current pulses or a potential to it, as the redox state of the CP solid-contact influences the overall potential of the ISE. The slope and thus the analytical performance of the SC-ISEs were retained despite the adjustment of the E°. The shortcircuiting of the SC-ISE with a conventional large-capacitance RE was found to be a feasible instrument-free method to control the E°. With this method, the driving force for the oxidation/reduction of the CP was the potential difference between the RE and the SC-ISE, and the position of the adjusted potential could be controlled by choosing a suitable concentration for the short-circuiting electrolyte. The piece-to-piece reproducibility of the adjusted potential was promising, and the day-today reproducibility for a specific sensor was excellent. The instrumentfree approach to control the E° is very attractive considering practical applications.
Resumo:
Sustainability and recycling are core values in today’s industrial operations. New materials, products and processes need to be designed in such a way as to consume fewer of the diminishing resources we have available and to put as little strain on the environment as possible. An integral part of this is cleaning and recycling. New processes are to be designed to improve the efficiency in this aspect. Wastewater, including municipal wastewaters, is treated in several steps including chemical and mechanical cleaning of waters. Well-cleaned water can be recycled and reused. Clean water for everyone is one of the greatest challenges we are facing today. Ferric sulphate, made by oxidation from ferrous sulphate, is used in water purification. The oxidation of ferrous sulphate, FeSO4, to ferric sulphate in acidic aqueous solutions of H2SO4 over finely dispersed active carbon particles was studied in a vigorously stirred batch reactor. Molecular oxygen was used as the oxidation agent and several catalysts were screened: active carbon, active carbon impregnated with Pt, Rh, Pd and Ru. Both active carbon and noble metal-active carbon catalysts enhanced the oxidation rate considerably. The order of the noble metals according to the effect was: Pt >> Rh > Pd, Ru. By the use of catalysts, the production capacities of existing oxidation units can be considerably increased. Good coagulants have a high charge on a long polymer chain effectively capturing dirty particles of the opposite charge. Analysis of the reaction product indicated that it is possible to obtain polymeric iron-based products with good coagulation properties. Systematic kinetic experiments were carried out at the temperature and pressure ranges of 60B100°C and 4B10 bar, respectively. The results revealed that both non-catalytic and catalytic oxidation of Fe2+ to Fe3+ take place simultaneously. The experimental data were fitted to rate equations, which were based on a plausible reaction mechanism: adsorption of dissolved oxygen on active carbon, electron transfer from Fe2+ ions to adsorbed oxygen and formation of surface hydroxyls. A comparison of the Fe2+ concentrations predicted by the kinetic model with the experimentally observed concentrations indicated that the mechanistic rate equations were able to describe the intrinsic oxidation kinetics of Fe2+ over active carbon and active carbon-noble metal catalysts. Engineering aspects were closely considered and effort was directed to utilizing existing equipment in the production of the new coagulant. Ferrous sulphate can be catalytically oxidized to produce a novel long-chained polymeric iron-based flocculent in an easy and affordable way in existing facilities. The results can be used for modelling the reactors and for scale-up. Ferric iron (Fe3+) was successfully applied for the dissolution of sphalerite. Sphalerite contains indium, gallium and germanium, among others, and the application can promote their recovery. The understanding of the reduction process of ferric to ferrous iron can be used to develop further the understanding of the dissolution mechanisms and oxidation of ferrous sulphate. Indium, gallium and germanium face an ever-increasing demand in the electronics industry, among others. The supply is, however, very limited. The fact that most part of the material is obtained through secondary production means that real production quota depends on the primary material production. This also sets the pricing. The primary production material is in most cases zinc and aluminium. Recycling of scrap material and the utilization of industrial waste, containing indium, gallium and geranium, is a necessity without real options. As a part of this study plausible methods for the recovery of indium, gallium and germanium have been studied. The results were encouraging and provided information about the precipitation of these valuables from highly acidic solutions. Indium and gallium were separated from acidic sulphuric acid solutions by precipitation with basic sulphates such as alunite or they were precipitated as basic sulphates of their own as galliunite and indiunite. Germanium may precipitate as a basic sulphate of a mixed composition. The precipitation is rapid and the selectivity is good. When the solutions contain both indium and gallium then the results show that gallium should be separated before indium to achieve a better selectivity. Germanium was separated from highly acidic sulphuric acid solutions containing other metals as well by precipitating with tannic acid. This is a highly selective method. According to the study other commonly found metals in the solution do not affect germanium precipitation. The reduction of ferric iron to ferrous, the precipitation of indium, gallium and germanium, and the dissolution of the raw materials are strongly depending on temperature and pH. The temperature and pH effect were studied and which contributed to the understanding and design of the different process steps. Increased temperature and reduced pH improve the reduction rate. Finally, the gained understanding in the studied areas can be employed to develop better industrial processes not only on a large scale but also increasingly on a smaller scale. The small amounts of indium, gallium and germanium may favour smaller and more locally bound recovery.