37 resultados para Parallel algorithm
Resumo:
Simulation has traditionally been used for analyzing the behavior of complex real world problems. Even though only some features of the problems are considered, simulation time tends to become quite high even for common simulation problems. Parallel and distributed simulation is a viable technique for accelerating the simulations. The success of parallel simulation depends heavily on the combination of the simulation application, algorithm and message population in the simulation is sufficient, no additional delay is caused by this environment. In this thesis a conservative, parallel simulation algorithm is applied to the simulation of a cellular network application in a distributed workstation environment. This thesis presents a distributed simulation environment, Diworse, which is based on the use of networked workstations. The distributed environment is considered especially hard for conservative simulation algorithms due to the high cost of communication. In this thesis, however, the distributed environment is shown to be a viable alternative if the amount of communication is kept reasonable. Novel ideas of multiple message simulation and channel reduction enable efficient use of this environment for the simulation of a cellular network application. The distribution of the simulation is based on a modification of the well known Chandy-Misra deadlock avoidance algorithm with null messages. The basic Chandy Misra algorithm is modified by using the null message cancellation and multiple message simulation techniques. The modifications reduce the amount of null messages and the time required for their execution, thus reducing the simulation time required. The null message cancellation technique reduces the processing time of null messages as the arriving null message cancels other non processed null messages. The multiple message simulation forms groups of messages as it simulates several messages before it releases the new created messages. If the message population in the simulation is suffiecient, no additional delay is caused by this operation A new technique for considering the simulation application is also presented. The performance is improved by establishing a neighborhood for the simulation elements. The neighborhood concept is based on a channel reduction technique, where the properties of the application exclusively determine which connections are necessary when a certain accuracy for simulation results is required. Distributed simulation is also analyzed in order to find out the effect of the different elements in the implemented simulation environment. This analysis is performed by using critical path analysis. Critical path analysis allows determination of a lower bound for the simulation time. In this thesis critical times are computed for sequential and parallel traces. The analysis based on sequential traces reveals the parallel properties of the application whereas the analysis based on parallel traces reveals the properties of the environment and the distribution.
Resumo:
The aim of this master’s thesis is to develop an algorithm to calculate the cable network for heat and power station CHGRES. This algorithm includes important aspect which has an influence on the cable network reliability. Moreover, according to developed algorithm, the optimal solution for modernization cable system from economical and technical point of view was obtained. The conditions of existing cable lines show that replacement is necessary. Otherwise, the fault situation would happen. In this case company would loss not only money but also its prestige. As a solution, XLPE single core cables are more profitable than other types of cable considered in this work. Moreover, it is presented the dependence of value of short circuit current on number of 10/110 kV transformers connected in parallel between main grid and considered 10 kV busbar and how it affects on final decision. Furthermore, the losses of company in power (capacity) market due to fault situation are presented. These losses are commensurable with investment to replace existing cable system.
Resumo:
The aim of this thesis is to describe hybrid drive design problems, the advantages and difficulties related to the drive. A review of possible hybrid constructions, benefits of parallel, series and series-parallel hybrids is done. In the thesis analytical and finite element calculations of permanent magnet synchronous machines with embedded magnets were done. The finite element calculations were done using Cedrat’s Flux 2D software. This machine is planned to be used as a motor-generator in a low power parallel hybrid vehicle. The boundary conditions for the design were found from Lucas-TVS Ltd., India. Design Requirements, briefly: • The system DC voltage level is 120 V, which implies Uphase = 49 V (RMS) in a three phase system. • The power output of 10 kW at base speed 1500 rpm (Torque of 65 Nm) is desired. • The maximum outer diameter should not be more than 250 mm, and the maximum core length should not exceed 40 mm. The main difficulties which the author met were the dimensional restrictions. After having designed and analyzed several possible constructions they were compared and the final design selected. Dimensioned and detailed design is performed. Effects of different parameters, such as the number of poles, number of turns and magnetic geometry are discussed. The best modification offers considerable reduction of volume.
Resumo:
Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.
Resumo:
In the Russian Wholesale Market, electricity and capacity are traded separately. Capacity is a special good, the sale of which obliges suppliers to keep their generating equipment ready to produce the quantity of electricity indicated by the System Operator. The purpose of the formation of capacity trading was the maintenance of reliable and uninterrupted delivery of electricity in the wholesale market. The price of capacity reflects constant investments in construction, modernization and maintenance of power plants. So, the capacity sale creates favorable conditions to attract investments in the energy sector because it guarantees the investor that his investments will be returned.
Resumo:
In this work a fuzzy linear system is used to solve Leontief input-output model with fuzzy entries. For solving this model, we assume that the consumption matrix from di erent sectors of the economy and demand are known. These assumptions heavily depend on the information obtained from the industries. Hence uncertainties are involved in this information. The aim of this work is to model these uncertainties and to address them by fuzzy entries such as fuzzy numbers and LR-type fuzzy numbers (triangular and trapezoidal). Fuzzy linear system has been developed using fuzzy data and it is solved using Gauss-Seidel algorithm. Numerical examples show the e ciency of this algorithm. The famous example from Prof. Leontief, where he solved the production levels for U.S. economy in 1958, is also further analyzed.
Resumo:
I doktorsavhandlingen undersöks förmågan att lösa hos ett antal lösare för optimeringsproblem och ett antal svårigheter med att göra en rättvis lösarjämförelse avslöjas. Dessutom framläggs några förbättringar som utförts på en av lösarna som heter GAMS/AlphaECP. Optimering innebär, i det här sammanhanget, att finna den bästa möjliga lösningen på ett problem. Den undersökta klassen av problem kan karaktäriseras som svårlöst och förekommer inom ett flertal industriområden. Målet har varit att undersöka om det finns en lösare som är universellt snabbare och hittar lösningar med högre kvalitet än någon av de andra lösarna. Det kommersiella optimeringssystemet GAMS (General Algebraic Modeling System) och omfattande problembibliotek har använts för att jämföra lösare. Förbättringarna som presenterats har utförts på GAMS/AlphaECP lösaren som baserar sig på skärplansmetoden Extended Cutting Plane (ECP). ECP-metoden har utvecklats främst av professor Tapio Westerlund på Anläggnings- och systemteknik vid Åbo Akademi.
Resumo:
Kaasukaarihitsauksessa suojakaasuna käytetään yleensä argonin ja hiilidioksidin tai argonin ja heliumin seoksia. Suojakaasu vaikuttaa useisiin hitsausominaisuuksiin, jotka puolestaan vaikuttavat hitsauksen laatuun ja tuottavuuteen. Automaattisella suojakaasun tunnistuksella ja virtausmäärän mittauksella voitaisiin tehdä hitsauksesta paitsi käyttäjän kannalta yksinkertaisempaa, myös laadukkaampaa. Työn tavoite on löytää mahdollisimman edullinen ja kuitenkin mahdollisimman tarkasti kaasuseoksia tunnistava menetelmä, jota voitaisiin hyödyntää MIG/MAG-hitsauskoneeseen sisäänrakennettuna. Selvä etu on, jos menetelmällä voidaan mitata myös kaasun virtausmäärä. Äänennopeus kaasumaisessa väliaineessa on aineen atomi- ja molekyylirakenteesta ja lämpötilasta riippuva ominaisuus, joka voidaan mitata melko edullisesti. Äänennopeuden määritys perustuu ääniaallon kulkuajan mittaamiseen tunnetun pituisella matkalla. Kaasun virtausnopeus on laskettavissa myötä- ja vastavirtaan mitattujen kulkuaikojen erotuksen avulla. Rakennettu mittauslaitteisto koostuu kahdesta ultraäänimuuntimesta, joiden halkaisija on 10 mm ja jotka toimivat sekä lähettimenä että vastaanottimena. Muuntimet ovat 140 mm:n etäisyydellä toisistaan virtauskanavassa, jossa suojakaasu virtaa yhdensuuntaisesti äänen kanssa. Virtauskanava on putki, jossa on käytetty elastisia materiaaleja, jotta ääniaaltojen eteneminen kanavan runkoa pitkin minimoituisi. Kehitetty algoritmi etsii kahden lähetetyn 40 kHz:n taajuisen kanttiaaltopulssin aiheuttaman vasteen perusteella ääniaallon saapumisajanhetken. Useiden mittausten, tulosten lajittelun ja suodatuksen jälkeen tuntemattomalle kaasulle lasketaan lämpötilakompensoitu vertailuluku. Tuntematon kaasu tunnistetaan vertailemalla lukua tunnettujen kaasuseosten mitattuihin vertailulukuihin. Laitteisto tunnistaa seokset, joissa heliumin osuus argonissa on enintään 50 %. Hiilidioksidia sisältävät argonin seokset puolestaan tunnistetaan puhtaaseen hiilidioksidiin asti jopa kahden prosenttiyksikön tarkkuudella. Kaasun tilavuusvirtausmittauksen tarkkuus on noin 1,0 l/min.
Resumo:
This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.
Resumo:
Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.
Resumo:
Ikääntyvien ihmisten kasvava määrä tulevina vuosikymmeninä kuormittaa kaupunkien kotihoitoa enenemässä määrin. Kaupunkien rajalliset resurssit ovat jo nyt koetuksella, eikä nykyiseen tilanteeseen ole nähtävissä huomattavaa parannusta tulevina vuosina. Kotihoidon henkilöstön määrää ei pystytä kasvattamaan riittävästi suhteessa kasvavien asiakasvirtojen kanssa, jotta korkea palvelun laatu voitaisiin taata myös tulevaisuudessa. Lahden kaupungin kotihoito pyrkii etsimään teknisiä ratkaisuja kotihoidon haasteisiin muun muassa kotihoidon töiden jakamiseen kehitetyllä optimointialgoritmilla sekä simuloinnilla. Tämä diplomityö käsittelee toimintatutkimuksen avulla simuloinnin tuomia hyötyjä sekä rajoitteita Lahden kotihoidon näkökulmasta. Launeen alueen kotihoidon haasteita käydään läpi neljässä eri työpajassa. Työssä esitetään Quest-simulointiohjelmiston ominaisuuksia, sekä Launeen alueen simulointimallin luomista aina suunnittelusta verifiointiin. Työn tuottama lisäarvo kotihoidon kehittämisessä tulee ilmi neljässä eri vaihtoehtoajossa kotihoitajien asiakkaalta toiselle kulkemien matkojen ja matkoihin käytettyjen aikojen mittaamisessa.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Parallel-connected photovoltaic inverters are required in large solar plants where it is not economically or technically reasonable to use a single inverter. Currently, parallel inverters require individual isolating transformers to cut the path for the circulating current. In this doctoral dissertation, the problem is approached by attempting to minimize the generated circulating current. The circulating current is a function of the generated common-mode voltages of the parallel inverters and can be minimized by synchronizing the inverters. The synchronization has previously been achieved by a communication link. However, in photovoltaic systems the inverters may be located far apart from each other. Thus, a control free of communication is desired. It is shown in this doctoral dissertation that the circulating current can also be obtained by a common-mode voltage measurement. A control method based on a short-time switching frequency transition is developed and tested with an actual photovoltaic environment of two parallel inverters connected to two 5 kW solar arrays. Controls based on the measurement of the circulating current and the common-mode voltage are generated and tested. A communication-free method of controlling the circulating current between parallelconnected inverters is developed and verified.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.