35 resultados para Heavy metal ions
Resumo:
The accumulation of aqueous pollutants is becoming a global problem. The search for suitable methods and/or combinations of water treatment processes is a task that can slow down and stop the process of water pollution. In this work, the method of wet oxidation was considered as an appropriate technique for the elimination of the impurities present in paper mill process waters. It has been shown that, when combined with traditional wastewater treatment processes, wet oxidation offers many advantages. The combination of coagulation and wet oxidation offers a new opportunity for the improvement of the quality of wastewater designated for discharge or recycling. First of all, the utilization of coagulated sludge via wet oxidation provides a conditioning process for the sludge, i.e. dewatering, which is rather difficult to carry out with untreated waste. Secondly, Fe2(SO4)3, which is employed earlier as a coagulant, transforms the conventional wet oxidation process into a catalytic one. The use of coagulation as the post-treatment for wet oxidation can offer the possibility of the brown hue that usually accompanies the partial oxidation to be reduced. As a result, the supernatant is less colored and also contains a rather low amount of Fe ions to beconsidered for recycling inside mills. The thickened part that consists of metal ions is then recycled back to the wet oxidation system. It was also observed that wet oxidation is favorable for the degradation of pitch substances (LWEs) and lignin that are present in the process waters of paper mills. Rather low operating temperatures are needed for wet oxidation in order to destruct LWEs. The oxidation in the alkaline media provides not only the faster elimination of pitch and lignin but also significantly improves the biodegradable characteristics of wastewater that contains lignin and pitch substances. During the course of the kinetic studies, a model, which can predict the enhancements of the biodegradability of wastewater, was elaborated. The model includes lumped concentrations suchas the chemical oxygen demand and biochemical oxygen demand and reflects a generalized reaction network of oxidative transformations. Later developments incorporated a new lump, the immediately available biochemical oxygen demand, which increased the fidelity of the predictions made by the model. Since changes in biodegradability occur simultaneously with the destruction of LWEs, an attempt was made to combine these two facts for modeling purposes.
Resumo:
A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.
Resumo:
Diplomityö on osa YTI-tutkimuskeskuksessa vuosina 2002 - 2004 toteutettavaa Jätekompostit rakeiksi tuhkaseostuksella -käyttöarvon parantaminen -projektia. Työssä tutkittiin Etelä-Savon Energia Oy:n Pursialan voimalaitoksen lentotuhkan fraktioimista voimalaitoksen nykyisellä 3-kenttäisellä sähkösuodattimella ja pilot-mittakaavaisella Ion Blast -koelaitteistolla. Sähkösuodattimen koeajojen aikana muuteltiin sen ajotapaa mm. CBO -suhteen ja maksimijänniteasetuksen avulla. Ion Blast -koelaitteistolla tutkittiin mahdollisuuksia voimalaitoksen lentotuhkan puhdistamiseksi raskasmetalleista. Lentotuhkan hyötykäyttöä vaikeuttaa sen raskasmetallipitoisuuksien suuri vaihtelu. Ongelmallisin raskasmetalli puuperäisessä lentotuhkassa on kadmium, jonka lannoitelainsäädännön raja-arvo on tällä hetkellä 3 mg/kg. Sähkösuodattimella tehtyjen fraktiointikokeiden perusteella voidaan todeta raskasmetallipitoisuuksien olevan pienimmillään sähkösuodattimen 1-kentässä ja suurimmillaan 3-kentässä. Tämä johtuu siitä, että 1-kenttään kerääntyy hiukkaskooltaan suurimmat lentotuhkahiukkaset ja 3-kentässä on mukana enemmän pienhiukkasia sisältävää tuhkaa. Lannoitteeksi menevän tuhkan Cd-pitoisuutta voidaan vähentää parhaimmillaan jopa 70 % sähkösuodattimella fraktioimalla. Muiden raskasmetallien pitoisuudet eivät vähene aivan yhtä paljon. Sähkösuodattimella voidaan tulosten perusteella fraktioida lentotuhkaa. Sähkösuodattimella ei kuitenkaan voida varmasti saavuttaa alle 3 mg/kg Cd-pitoisuuksia polttoaineen laadunvaihtelun vuoksi. Ion Blast -koelaitteiston tulokset tukevat sähkösuodattimella tehtyjä kokeita. Erottimen jännitteen kasvaessa raskasmetalleja sisältävien hiukkasten erotusaste kasvaa. Ion Blast -laitteistolla tehdyissä kokeissa myös Cd-pitoisuus oli korkeimmillaan pienimmän raeluokan hiukkasissa ja laski sitten raeluokan suurentuessa. Ion Blast -laitteisto ei kuitenkaan sellaisenaan ole hyvä fraktiointiin. Se on liian tehokas, jolloin se puhdistaa tehokkaasti myös raskasmetalleja sisältävät pienhiukkaset. Jos laitetta aiotaan käyttää fraktiointiin, tulisi sen rakennetta muuttaa.
Resumo:
Työn tarkoituksena oli selvittää Alstom Finland Oy:n pääasiakkaiden ympäristö-lupatilanne sekä tarkastella, miten Alstomin toimittamat hiukkastenpuhdistuslait-teet täyttävät muuttavat lainsäädännön vaatimukset. Lisäksi työssä arvioitiin lai-tosten hiukkaspäästöjen vähentämisestä syntyvää savukaasunpuhdistuslaitteiden investointitarvetta. Työn teoriaosuus sisältää katsauksen ympäristölupakäytäntöön sekä Valtioneu-voston asetuksiin, jotka koskevat laitosten hiukkaspäästöjä. Lisäksi työssä on kä-sitelty parhaan käytettävissä olevan tekniikan mukaisia hiukkaspäästörajoja ja tekniikoita sekä hiukkasten muodostumista että raskasmetallien sitoutumista hiukkasiin. Kaikkiaan työssä mukana olevia laitoksia oli 49, joista tarkemmin tarkasteltiin 12 laitosta. Suurin osa laitoksista ei ollut saanut tai hakenut ympäristönsuojelulain mukaista ympäristölupaa, joten niillä on velvollisuus hakea lupaa siirtymäsään-nöksen mukaisesti vuoden 2004 loppuun mennessä. Tarkemmassa tarkastelussa olevien laitosten hiukkaspäästömittaustuloksia vertailtiin nykyisiin sekä uu-siin/oletettuihin ympäristölupien hiukkaspäästörajoihin. Tarkastelussa mukana olevasta seitsemästä soodakattilalaitoksesta, joilla ei vielä ollut uutta ympäristölu-paa, 43 % ylitti arvioidun uuden luparajan 50 mg/m3(n):ssa ja kolmesta meesauu-nia käyttävästä laitoksesta yksi sekä viidestä muusta kattilasta kaksi.
Resumo:
A total of over 200 different samples of bark and wood of Silver birch, Norway spruce and Scots pine were analysed. Samples were taken from several areas in western Finland, some with known sources of atmospheric heavy metal emission (Harjavalta, Ykspihlaja). Also analytical data for pine needles from some sites are reported. The chemical analyses were performed by thick-target particle-induced X-ray emission (PIXE) spectrometry after preconcentration by dry ashing of samples at 550oC. The following elements were quantified in most of the samples: P, S, K, Ca, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Cd, Ba and Pb. The ash percentage and the chemical composition of ashes of different wood materials were also obtained, as dry ashing was used in the analytical procedure. The variations in elemental concentrations in wood and bark of an individual tree, expressed as RSDs, were mostly in the range 10 – 20 %. For several trees of the same species sampled from small areas (< 1 ha), the variations in elemental concentrations were surprisingly high (RSDs 20 – 50 %). In the vicinity of metal plants, effects of strong atmospheric heavy metal pollution (pollution factor above 100) were observed in pine bark. The increase of heavy metal content in wood samples from the same sites was quite small. Elemental concentrations in ashes of bark and wood, from areas with no local source of atmospheric pollution, were relatively uniform. Based on this observation an alternative way of demonstrating atmospheric pollution of tree bark is discussed.
Resumo:
In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.
Resumo:
Mekaanisen massan peroksidivalkaisussa on perinteisesti käytetty kahta kompleksinmuodostajaa, jotka ovat dietyleenitriamiinipentaetikkahappo (DTPA) ja etyleenidiamiinipentaetikkahappo (EDTA). Kompleksinmuodostajat saavat aikaan hyvän kelatointituloksen muodostamalla valkaisulle haitallisten metalli-ionien kanssa kompleksin ja estäen näin metalli-ionien valkaisutulosta huonontavan vaikutuksen. Perinteiset kompleksinmuodostajat DTPA ja EDTA eivät kuitenkaan ole biohajoavia ja niiden epäillään irrottavan metalleja vesistöjen sedimenteistä. Työssä selvitettiin kolmen eri biohajoavan kompleksinmuodostajan valkaisuteho verrattuna perinteisiin kompleksinmuodostajiin. Laboratoriossa suoritetut pesukokeet osoittivat, että mikään biohajoava kompleksinmuodostaja ei saavuttanut samaa pesutehoa kuin perinteiset kompleksinmuodostajat. Valkaisukokeet kuitenkin osoittivat, että biohajoava kompleksinmuodostaja ISA pääsi hyvin lähelle perinteisten kompleksinmuodostajien valkaisutuloksia suoritettaessa valkaisu siten, että massa esipestään kompleksinmuodostajalla ja sen jälkeen valkaistaan vakiokemikaaliannoksella alkalina ollessa natriumhydroksidi. Kaksi muuta biohajoavaa kompleksinmuodostajaa, ISA+EDDS ja HAS, eivät saavuttaneet samaa tasoa. HAS toimi kyllä stabilaattorina, muttei pystynyt nostamaan massan vaaleutta.
Resumo:
The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.
Resumo:
The deterioration of surface waters is one of the most important issues in the environmental management of the European Union. Thus, the EU Water Framework Directive 2000/60/EC (WFD) requires “good ecological and chemical status” of surface waters by 2015 allowing only a slight departure from ecological reference conditions characterized by the biological communities typical for the conditions of minimal anthropogenic impact. The WFD requires the determination of ecological reference conditions and the present ecological status of surface waters. To meet this legislative demand, sedimentary diatom assemblages were used in these studies with various methods 1) to assess natural and human activity induced environmental changes, 2) to characterize background conditions 3) to evaluate the present ecological status and 4) to predict the future of the water bodies in the light of palaeolimnological data. As the WFD refers to all surface waters, both coastal and inland sites were included. Two long and two short sediment cores from the Archipelago Sea in the northern Baltic Sea were examined for their siliceous microfossils in order to assess (1) the Holocene palaeoenvironmental history and (2) the recent eutrophication of the area. The diatom record was divided into local diatom assemblage zones (LDAZ, long cores) and diatom assemblage zones (DAZ, short cores). Locally weighted weighted averaging regression and calibration (LWWA) was applied for the quantitative reconstruction of past TN concentrations (short cores). An age model for the long cores was constructed by using independent palaeomagnetic and AMS-14C methods. The short cores were dated using radiometric (210Pb, 226Ra and 137Cs) methods. The long cores date back to the early history of the Archipelago Sea, which was freshwater – no salinity increase referable to the brackish phase of the Yoldia Sea is recognized. The nutrient status of the lacustrine phase was slightly higher in the Archipelago Sea than in the Baltic Proper. Initial brackish-water influence is observed at 8 150 ±80 cal. BP (LDAZ4), but fully brackish conditions were established at 7 700 ±80 cal. BP (LDAZ5). The diatom assemblages indicate increasing salinity, warming climate and possible eutrophic conditions during the lacustrine to brackish-water transition. The decreasing abundance of Pseudosolenia calcar-avis (Schultze) Sundström and the increasing abundance of the ice-cover indicator species Pauliella taeniata (Grunow) Round and Basson indicate decreasing salinity and climatic cooling after ca. 5 000 cal. BP. Signs of eutrophication are visible in the most recent diatom assemblage zones of both short cores. Diatom-inferred total nitrogen (DI-TN) reconstructions partially fail to trace the actual measured total nitrogen concentrations especially from the late 1980s to the mid 1990s. This is most likely due to the dominating diatom species Pauliella taeniata, Thalassiosira levanderi Van Goor and Fragilariopsis cylindrus (Grunow) W. Krieger being more influenced by factors such as the length of the ice-season rather than nutrient concentrations. It is concluded that the diatom assemblages of the study sites are principally governed by climate fluctuations, with a slight influence of eutrophication visible in the most recent sediments. There are indications that global warming, with reduced ice cover, could impact the spring blooming diatom species composition in the Archipelago Sea. In addition, increased sediment accumulation in the early 90s coincides with the short ice-seasons suggesting that warming climate with decreasing ice-cover may increase sedimentation in the study area. The diverse diatom assemblages dominated by benthic species (54 %) in DAZ1 in the Käldö Fjärd core can be taken as background diatom assemblages for the Archipelago Sea. Since then turbidity has increased and the diatom assemblages have been dominated by planktonic diatoms from around the mid 1800s onwards. The reconstructed reference conditions for the total nitrogen concentrations fluctuate around 400 μg l-1. Altogether two short sediment cores and eight short cores for top-bottom analysis were retrieved from Lake Orijärvi and Lake Määrjärvi to assess the impact of the acid mine drainage (AMD) derived metals from the Orijärvi mine tailings on the diatom communities of the lakes. The Cu (Pb, Zn) mine of Orijärvi (1757 – 1956) was the first one in Finland where flotation techniques (1911 – 1955) were used to enrich ore and large quantities of tailings were produced. The AMD derived metal impact to the lakes was found to be among the heaviest thus far recorded in Finland. Concentrations of Cu, Pb and Zn in Lake Orijärvi sediments are two to three orders of magnitude higher than background values. The metal inputs have affected Lake Orijärvi and Lake Määrjärvi diatom communities at the community levels through shifts in dominant taxa (both lakes) and at the individual level through alteration in frustule morphology (Lake Orijärvi). At present, lake water still has elevated heavy metal levels, indicating that the impact from the tailings area continues to affect both lakes. Lake Orijärvi diatom assemblages are completely dominated by benthic species and are lacking planktonic diatoms. In Lake Määrjärvi the proportion of benthic and tychoplanktonic diatoms has increased and the planktonic taxa have decreased in abundance. Achnanthidium minutissimum Kützing and Brachysira vitrea (Grun.) R. Ross in Hartley were the most tolerant species to increased metal concentrations. Planktonic diatoms are more sensitive to metal contamination than benthic taxa, especially species in the genus Cyclotella (Kützing) Brébisson. The ecological reference conditions assessed in this study for Lake Orijärvi and Lake Määrjärvi comprise diverse planktonic and benthic communitites typical of circumneutral oligotrophic lakes, where the planktonic diatoms belonging to genera Cyclotella , Aulacoseira Thwaites, Tabellaria Ehrenberg and Asterionella Hassall dominate in relative abundances up to ca. 70%. The benthic communities are more diverse than the planktonic consisting of diatoms belonging to the genera Achnanthes Bory, Fragilaria Lyngbye and Navicula St. Vincent. This study clearly demonstrates that palaeolimnological methods, especially diatom analysis, provide a powerful tool for the EU Water Frame Work Directive for defining reference conditions, natural variability and current status of surface waters. The top/bottom approach is a very useful tool in larger-scale studies needed for management purposes. This “before and after” type of sediment sampling method can provide a very time and cost effective assessment of ecological reference conditions of surface waters.
Resumo:
The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silica–supported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.
Resumo:
Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen. Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta. Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.
Resumo:
Chemical coagulation is commonly used in raw water and wastewater treatment plants for the destabilisation of pollutants so that they can be removed in the subsequent separation processes. The most commonly used coagulation chemicals are aluminium and iron metal salts. Electrocoagulation technology has also been proposed for the treatment of raw waters and wastewaters. With this technology, metal cations are produced on the electrodes via electrolysis and these cations form various hydroxides in the water depending on the water pH. In addition to this main reaction, several side reactions, such as hydrogen bubble formation and the reduction of metals on cathodes, also take place in the cell. In this research, the applications of electrocoagulation were investigated in raw water treatment and wastewater applications. The surface water used in this research contained high concentrations of natural organic matter (NOM). The effect of the main parameters – current density, initial pH, electric charge per volume, temperature and electrolysis cell construction – on NOM removal were investigated. In the wastewater treatment studies, the removal of malodorous sulphides and toxic compounds from the wastewaters and debarking effluents were studied. Also, the main parameters of the treatment, such as initial pH and current density, were investigated. Aluminium electrodes were selected for the raw water treatment, whereas wastewaters and debarking effluent were treated with iron electrodes. According to results of this study, aluminium is more suitable electrode material for electrocoagulation applications because it produces Al(III) species. Metal ions and hydroxides produced by iron electrodes are less effective in the destabilisation of pollutants because iron electrodes produce more soluble and less charged Fe(II) species. However, Fe(II) can be effective in some special applications, such as sulphide removal. The resulting metal concentration is the main parameter affecting destabilisation of pollutants. Current density, treatment time, temperature and electrolysis cell construction affect the dissolution of electrodes and hence also the removal of pollutants. However, it seems that these parameters have minimal significance in the destabilization of the pollutants besides this effect (in the studied range of parameters). Initial pH and final pH have an effect on the dissolution of electrodes, but they also define what aluminium or iron species are formed in the solution and have an effect on the ζ-potential of all charged species in the solution. According to the results of this study, destabilisation mechanisms of pollutants by electrocoagulation and chemical coagulation are similar. Optimum DOC removal and low residual aluminium can be obtained simultaneously with electrocoagulation, which may be a significant benefit of electrocoagulation in surface water treatment compared to chemical coagulation. Surface water treatment with electrocoagulation can produce high quality water, which could be used as potable water or fresh water for industrial applications. In wastewater treatment applications, electrocoagulation can be used to precipitate malodorous sulphides to prevent their release into air. Technology seems to be able to remove some toxic pollutants from wastewater and could be used as pretreatment prior to treatment at a biological wastewater treatment plant. However, a thorough economic and ecological comparison of chemical coagulation and electrocoagulation is recommended, because these methods seem to be similar in pollutant destabilisation mechanisms, metal consumption and removal efficiency in most applications.
Resumo:
Ion exchange membranes are indispensable for the separation of ionic species. They can discriminate between anions and cations depending on the type of fixed ionic group present in the membrane. These conventional ion exchange membranes (CIX) have exceptional ionic conductivity, which is advantageous in various electromembrane separation processes such as electrodialysis, electrodeionisation and electrochemical ion exchange. The main disadvantage of CIX membranes is their high electrical resistance owing to the fact that the membranes are electronically non conductive. An alternative can be electroactive ion exchange membranes, which are ionically and electronically conducting. Polypyrrole (PPy) is a type of electroactive ion exchange material as well as a commonly known conducting polymer. When PPy membranes are repeatedly reduced and oxidised, ions are pumped through the membrane. The main aim of this thesis was to develop electroactive cation transport membranes based on PPy for the selective transport of divalent cations. Membranes developed composed of PPy films deposited on commercially available support materials. To carry out this study, cation exchange membranes based on PPy doped with immobile anions were prepared. Two types of dopant anions known to interact with divalent metal ions were considered, namely 4-sulphonic calix[6]arene (C6S) and carboxylated multiwalled carbon nanotubes (CNT). The transport of ions across membranes containing PPy doped with polystyrene sulphonate (PSS) and PPy doped with para-toluene sulphonate (pTS) was also studied in order to understand the nature of ion transport and permeability across PPy(CNT) and PPy(C6S) membranes. In the course of these studies, membrane characterisation was performed using electrochemical quartz crystal microbalance (EQCM) and scanning electron microscopy (SEM). Permeability of the membranes towards divalent cations was explored using a two compartment transport cell. EQCM results demonstrated that the ion exchange behaviour of polypyrrole is dependent on a number of factors including the type of dopant anion present, the type of ions present in the surrounding medium, the scan rate used during the experiment and the previous history of the polymer film. The morphology of PPy films was found to change when the dopant anion was varied and even when the thickness of the film was altered in some cases. In nearly all cases the permeability of the membranes towards metal ions followed the order K+ > Ca2+ > Mn2+. The one exception was PPy(C6S), for which the permeability followed the order Ca2+ ≥ K+ > Mn2+ > Co2+ > Cr3+. The above permeability sequences show a strong dependence on the size of the metal ions with metal ions having the smallest hydrated radii exhibiting the highest flux. Another factor that affected the permeability towards metal ions was the thickness of the PPy films. Films with the least thickness showed higher metal ion fluxes. Electrochemical control over ion transport across PPy(CNT) membrane was obtained when films composed of the latter were deposited on track-etched Nucleopore® membranes as support material. In contrast, the flux of ions across the same film was concentration gradient dependent when the polymer was deposited on polyvinylidene difluoride membranes as support material. However, electrochemical control over metal ion transport was achieved with a bilayer type of PPy film consisting of PPy(pTS)/PPy(CNT), irrespective of the type of support material. In the course of studying macroscopic charge balance during transport experiments performed using a two compartment transport cell, it was observed that PPy films were non-permselective. A clear correlation between the change in pH in the receiving solution and the ions transported across the membrane was observed. A decrease in solution pH was detected when the polymer membrane acted primarily as an anion exchanger, while an increase in pH occurred when it functioned as a cation exchanger. When there was an approximately equal flux of anions and cations across the polymer membrane, the pH in the receiving solution was in the range 6 - 8. These observations suggest that macroscopic charge balance during the transport of cations and anions across polypyrrole membranes was maintained by introduction of anions (OH-) and cations (H+) produced via electrolysis of water.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.
Resumo:
Työn tarkoituksena oli tutkia arvometalleja sisältävän liuoksen puhdistamista jat-kuvatoimisella ioninvaihdolla. Teoriaosassa käsitellään ioninvaihdon periaate, sekä jatkuvatoimisen ioninvaihdon laiteratkaisuja ristivirta- ja vastavirtasysteemeissä. Lopuksi esitellään Simuloidun liikkuvapedin (SMB) virtausnopeuksien laske-miseksi käytettävä kolmiomenetelmä. Kokeellisen osan tarkoituksena on demonstroida laboratorioon rakennetun jatku-vatoimisen ioninvaihtimen, Simuloidun liikkuvapedin, käyttö arvometallia sisäl-tävän liuoksen puhdistamiseksi kahdenarvoisista metalli-ioneista. Kokeissa käy-tettiin hopeaa sisältävää NaCl-liuosta, josta pyrittiin puhdistamaan Mg2+, Ca2+, Pb2+ ja Zn2+-ionit ekstraktina. Laitteistolla suoritettiin kolme ajoa, joista kaksi edusti vastavirtasysteemiä ja yksi ristivirtasysteemiä. Ensimmäisessä vastavirta-ajossa sekä ekstrakti että raffinaattin erottuva hopealiuos tulivat puhtaina. Toisessa vastavirta-ajossa pyrittiin parantamaan tuottavuutta nostamalla syötön virtausnopeutta, jolloin raffinaatin puhtaus kärsi Pb2+ ja Mg2+-ionien kulkeutuessa liuosfaasin mukana raffinaattiin. Ristivirta-ajossa vain yksi kolmesta raffinaatista saavutti 100 % puhtauden. Kokeet osoittivat, että Mg2+, Ca2+, Pb2+ ja Zn2+-ionien erottaminen hopeaionista on mahdollista käyttämällämme SMB-laitteistolla. Tuottavuuden parantaminen syötön virtausnopeutta nostamalla kuitenkin heikentää puhtautta. Cross-flow-systeemin erilleenkytkettyjen kolonnien ansioista painehäviö on pienempi, mikä mahdollistaa korkeammat virtausnopeudet, mikäli ei vaadita 100 % puhtautta.