52 resultados para Data mining, Business intelligence, Previsioni di mercato
Resumo:
This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.
Resumo:
Tässä diplomityössä selvitetään case-tutkimuksena parhaita käytäntöjä Business Intelligence Competency Centerin (BICC) eli liiketoimintatiedonhallinnan osaamiskeskuksen perustamiseen. Työ tehdään LähiTapiolalle, jossa on haasteita BI-alueen hallinnoinnissa kehittämisen hajaantuessa eri yksiköihin ja yhtiöihin. Myös järjestelmäympäristö on moninainen. BICC:llä tavoitellaan parempaa näkyvyyttä liiketoiminnan tarpeisiin ja toisaalta halutaan tehostaa tiedon hyödyntämistä johtamisessa sekä operatiivisen tason työskentelyssä. Tavoitteena on lisäksi saada kustannuksia pienemmäksi yhtenäistämällä järjestelmäympäristöjä ja BI-työkaluja kuten myös toimintamalleja. Työssä tehdään kirjallisuuskatsaus ja haastatellaan asiantuntijoita kolmessa yrityksessä. Tutkimuksen perusteella voidaan todeta, että liiketoiminnan BI-tarpeita kannattaa mahdollistaa eri tasoilla perusraportoinnista Ad-hoc –raportointiin ja edistyneeseen analytiikkaan huomioimalla nämä toimintamalleissa ja järjestelmäarkkitehtuurissa. BICC:n perustamisessa liiketoimintatarpeisiin vastaaminen on etusijalla.
Resumo:
Työn tavoitteena on tutkia Business Intelligencen ja BI-työkalujen vaatimusten kehittymistä viime vuosien aikana ja tutkia miten Microsoft Power BI -ohjelmisto vastaa modernin päätöksenteon tarpeisiin. Työ on toteutettu suurimmalta osin kirjallisuuskatsauksena, minkä lisäksi Microsoft Power BI:n toiminnallisuutta on tutkittu käytännössä käyttäen ohjelmiston ilmaisversiota. Tutkimuksessa on havaittu, että tiedon lähteiden määrän ja datan monimuotoisuuden kasvaessa on syntynyt tarve uusille, tehokkaille BI-järjestelmäratkaisuille, jotka hyödyntävät uudenlaisia menetelmiä. Modernissa BI 2.0 -mallissa korostuvat kehittyneemmän verkkoinfrastruktuurin ja ohjelmistotekniikan täysi hyödyntäminen, käytön helppous, tiedon tuottaminen ja jakaminen massoille, tiedon rikastamisen mahdollistaminen ja visualisoinnin ja interaktiivisuuden keskeinen asema tiedon tulkinnassa. Tutkimuksen perusteella Microsoft Power BI vaikuttaisi täyttävän keskeneräisyydestään ja muutamista tiedonhallinnallisista puutteistaan huolimatta lähes kaikki toimivan BI 2.0 -järjestelmän määritelmistä. Ohjelmisto tarjoaa riittävät analyyttiset ja esitystekniset työkalut useimpien tyypillisten käyttäjien tarpeisiin, minkä lisäksi paranneltu Location Intelligence -ratkaisu sekä uudet Q&A ja nopea oivallus -toiminnot luovat mielenkiintoisen tavan selata dataa. Jää nähtäväksi, miten ratkaisu kehittyy vielä tulevaisuudessa.
Resumo:
Data mining, as a heatedly discussed term, has been studied in various fields. Its possibilities in refining the decision-making process, realizing potential patterns and creating valuable knowledge have won attention of scholars and practitioners. However, there are less studies intending to combine data mining and libraries where data generation occurs all the time. Therefore, this thesis plans to fill such a gap. Meanwhile, potential opportunities created by data mining are explored to enhance one of the most important elements of libraries: reference service. In order to thoroughly demonstrate the feasibility and applicability of data mining, literature is reviewed to establish a critical understanding of data mining in libraries and attain the current status of library reference service. The result of the literature review indicates that free online data resources other than data generated on social media are rarely considered to be applied in current library data mining mandates. Therefore, the result of the literature review motivates the presented study to utilize online free resources. Furthermore, the natural match between data mining and libraries is established. The natural match is explained by emphasizing the data richness reality and considering data mining as one kind of knowledge, an easy choice for libraries, and a wise method to overcome reference service challenges. The natural match, especially the aspect that data mining could be helpful for library reference service, lays the main theoretical foundation for the empirical work in this study. Turku Main Library was selected as the case to answer the research question: whether data mining is feasible and applicable for reference service improvement. In this case, the daily visit from 2009 to 2015 in Turku Main Library is considered as the resource for data mining. In addition, corresponding weather conditions are collected from Weather Underground, which is totally free online. Before officially being analyzed, the collected dataset is cleansed and preprocessed in order to ensure the quality of data mining. Multiple regression analysis is employed to mine the final dataset. Hourly visits are the independent variable and weather conditions, Discomfort Index and seven days in a week are dependent variables. In the end, four models in different seasons are established to predict visiting situations in each season. Patterns are realized in different seasons and implications are created based on the discovered patterns. In addition, library-climate points are generated by a clustering method, which simplifies the process for librarians using weather data to forecast library visiting situation. Then the data mining result is interpreted from the perspective of improving reference service. After this data mining work, the result of the case study is presented to librarians so as to collect professional opinions regarding the possibility of employing data mining to improve reference services. In the end, positive opinions are collected, which implies that it is feasible to utilizing data mining as a tool to enhance library reference service.
Resumo:
The incredible rapid development to huge volumes of air travel, mainly because of jet airliners that appeared to the sky in the 1950s, created the need for systematic research for aviation safety and collecting data about air traffic. The structured data can be analysed easily using queries from databases and running theseresults through graphic tools. However, in analysing narratives that often give more accurate information about the case, mining tools are needed. The analysis of textual data with computers has not been possible until data mining tools have been developed. Their use, at least among aviation, is still at a moderate level. The research aims at discovering lethal trends in the flight safety reports. The narratives of 1,200 flight safety reports from years 1994 – 1996 in Finnish were processed with three text mining tools. One of them was totally language independent, the other had a specific configuration for Finnish and the third originally created for English, but encouraging results had been achieved with Spanish and that is why a Finnish test was undertaken, too. The global rate of accidents is stabilising and the situation can now be regarded as satisfactory, but because of the growth in air traffic, the absolute number of fatal accidents per year might increase, if the flight safety will not be improved. The collection of data and reporting systems have reached their top level. The focal point in increasing the flight safety is analysis. The air traffic has generally been forecasted to grow 5 – 6 per cent annually over the next two decades. During this period, the global air travel will probably double also with relatively conservative expectations of economic growth. This development makes the airline management confront growing pressure due to increasing competition, signify cant rise in fuel prices and the need to reduce the incident rate due to expected growth in air traffic volumes. All this emphasises the urgent need for new tools and methods. All systems provided encouraging results, as well as proved challenges still to be won. Flight safety can be improved through the development and utilisation of sophisticated analysis tools and methods, like data mining, using its results supporting the decision process of the executives.
Resumo:
As technology has developed it has increased the number of data produced and collected from business environment. Over 80% of that data includes some sort of reference to geographical location. Individuals have used that information by utilizing Google Maps or different GPS devices, however such information has remained unexploited in business. This thesis will study the use and utilization of geographically referenced data in capital-intensive business by first providing theoretical insight into how data and data-driven management enables and enhances the business and how especially geographically referenced data adds value to the company and then examining empirical case evidence how geographical information can truly be exploited in capital-intensive business and what are the value adding elements of geographical information to the business. The study contains semi-structured interviews that are used to scan attitudes and beliefs of an organization towards the geographic information and to discover fields of applications for the use of geographic information system within the case company. Additionally geographical data is tested in order to illustrate how the data could be used in practice. Finally the outcome of the thesis provides understanding from which elements the added value of geographical information in business is consisted of and how such data can be utilized in the case company and in capital-intensive business.
Resumo:
Kilpailuetua tavoittelevan yrityksen pitää kyetä jalostamaan tietoa ja tunnistamaan sen avulla uusia tulevaisuuden mahdollisuuksia. Tulevaisuuden mielikuvien luomiseksi yrityksen on tunnettava toimintaympäristönsä ja olla herkkänä havaitsemaan muutostrendit ja muut toimintaympäristön signaalit. Ympäristön elintärkeät signaalit liittyvät kilpailijoihin, teknologian kehittymiseen, arvomaailman muutoksiin, globaaleihin väestötrendeihin tai jopa ympäristön muutoksiin. Spatiaaliset suhteet ovat peruspilareita käsitteellistää maailmaamme. Pitney (2015) on arvioinut, että 80 % kaikesta bisnesdatasta sisältää jollakin tavoin viittauksia paikkatietoon. Siitä huolimatta paikkatietoa on vielä huonosti hyödynnetty yritysten strategisten päätösten tukena. Teknologioiden kehittyminen, tiedon nopea siirto ja paikannustekniikoiden integroiminen eri laitteisiin ovat mahdollistaneet sen, että paikkatietoa hyödyntäviä palveluja ja ratkaisuja tullaan yhä enemmän näkemään yrityskentässä. Tutkimuksen tavoitteena oli selvittää voiko location intelligence toimia strategisen päätöksenteon tukena ja jos voi, niin miten. Työ toteutettiin konstruktiivista tutkimusmenetelmää käyttäen, jolla pyritään ratkaisemaan jokin relevantti ongelma. Konstruktiivinen tutkimus tehtiin tiiviissä yhteistyössä kolmen pk-yrityksen kanssa ja siihen haastateltiin kuutta eri strategiasta vastaavaa henkilöä. Tutkimuksen tuloksena löydettiin, että location intelligenceä voidaan hyödyntää strategisen päätöksenteon tukena usealla eri tasolla. Yksinkertaisimmassa karttaratkaisussa halutut tiedot tuodaan kartalle ja luodaan visuaalinen esitys, jonka avulla johtopäätöksien tekeminen helpottuu. Toisen tason karttaratkaisu pitää sisällään sekä sijainti- että ominaisuustietoa, jota on yhdistetty eri lähteistä. Tämä toisen tason karttaratkaisu on usein kuvailevaa analytiikkaa, joka mahdollistaa erilaisten ilmiöiden analysoinnin. Kolmannen eli ylimmän tason karttaratkaisu tarjoaa ennakoivaa analytiikkaa ja malleja tulevaisuudesta. Tällöin ohjelmaan koodataan älykkyyttä, jossa informaation keskinäisiä suhteita on määritelty joko tiedon louhintaa tai tilastollisia analyysejä hyödyntäen. Tutkimuksen johtopäätöksenä voidaan todeta, että location intelligence pystyy tarjoamaan lisäarvoa strategisen päätöksenteon tueksi, mikäli yritykselle on hyödyllistä ymmärtää eri ilmiöiden, asiakastarpeiden, kilpailijoiden ja markkinamuutoksien maantieteellisiä eroavaisuuksia. Parhaimmillaan location intelligence -ratkaisu tarjoaa luotettavan analyysin, jossa tieto välittyy muuttumattomana päätöksentekijältä toiselle ja johtopäätökseen johtaneita syitä on mahdollista palata tarkastelemaan tarvittaessa uudelleen.
Resumo:
After sales business is an effective way to create profit and increase customer satisfaction in manufacturing companies. Despite this, some special business characteristics that are linked to these functions, make it exceptionally challenging in its own way. This Master’s Thesis examines the current situation of the data and inventory management in the case company regarding possibilities and challenges related to the consolidation of current business operations. The research examines process steps, procedures, data requirements, data mining practices and data storage management of spare part sales process, whereas the part focusing on inventory management is reviewing the current stock value and examining current practices and operational principles. There are two global after sales units which supply spare parts and issues reviewed in this study are examined from both units’ perspective. The analysis is focused on the operations of that unit where functions would be centralized by default, if change decisions are carried out. It was discovered that both data and inventory management include clear shortcomings, which result from lack of internal instructions and established processes as well as lack of cooperation with other stakeholders related to product’s lifecycle. The main product of data management was a guideline for consolidating the functions, tailored for the company’s needs. Additionally, potentially scrapped spare part were listed and a proposal of inventory management instructions was drafted. If the suggested spare part materials will be scrapped, stock value will decrease 46 percent. A guideline which was reviewed and commented in this thesis was chosen as the basis of the inventory management instructions.
Resumo:
Tämän tutkimuksen kohdeorganisaatio on suuren teollisuusyrityksen sisäinen raaka-aineen hankkija ja toimittaja. Tutkimuksessa selvitetään, mistä kohdeorganisaation hankinta-asiakkuuksien arvo muodostuu ja kuinka olemassa olevan liiketoimintadatan perusteella voidaan tutkia, arvioida ja luokitella kauppojen ja asiakkuuksien arvokkuutta aikaan sitomatta, objektiivisesti ja luotettavasti. Tutkimuksen teoriaosiossa esitellään lähestymistapoja ja menetelmiä, joiden avulla voidaan jalostaa olemassa olevasta datasta uutta sidosryhmätietämystä liiketoiminnan käyttöön, sekä tarkastellaan asiakaskannattavuusanalyysin, portfolioanalyysin, sekä asiakassegmentoinnin perusteita ja malleja. Näiden teorioiden ja mallien pohjalta rakennetaan kohdeorganisaatiolle räätälöity, indeksoituihin hinta-, määrä- ja kauppojen toistuvuus-muuttujiin perustuva, asiakkuuksien arvottamis- ja luokittelumalli. Arvottamis- ja luokittelumalli testataan vuosien 2003–2007 liiketoimintadatasta muodostetulla 389 336 kaupparivin otoksella, joka sisältää 42 186 arvioitavaa asiakkuussuhdetta. Merkittävin esille nouseva havainto on noin 5 000:n keskimääräistä selkeästi kalliimman asiakkuuden ryhmä. Aineisto ja sen poikkeavuudet testataan tilastollisin menetelmin, jotta saadaan selville asiakkuuden arvoon vaikuttavat ja arvoa selittävät tekijät. Lopuksi pohditaan arvottamismallin merkitystä analyyttisemman ostotoiminnan ja asiakkuudenhallinnan välineenä, sekä esitetään muutamia parannusehdotuksia.
Resumo:
Tämän pro gradu -tutkielman tavoitteena on selvittää, miten Business Intelligencea voidaan hyödyntää autoalan liiketoiminnassa Suomessa. Työssä tutkitaan erityisesti autoalan tietotarpeita, tietolähteitä, tiedon analysointia sekä tiedon hyödynnettävyyttä liiketoiminnan ohjaamisessa ja päätöksenteossa. Työn tutkimusstrategiana käytettiin tapaustutkimusta, jonka kohderyhmänä oli viisi suomalaista autoalan suuryritystä. Tutkimuksen empiirinen aineisto hankittiin haastattelemalla yritysten Business Intelligence -toiminnoista vastaavia henkilöitä. Tutkimuksen tulosten perusteella Business Intelligence merkitsi yrityksille ensisijaisesti toiminnanohjausta ja sen seurantaa, sekä korkealaatuisen tiedon tuottamista päätöksentekoa varten. Keskeisiksi tietotarpeiksi luokiteltiin asiakkaisiin, ajoneuvoihin, sisäisiin prosesseihin, liiketoimintatapahtumiin, kilpailijoihin, toimialaan ja asiakastyytyväisyyteen liittyvät tiedot. Tutkimuksen tulosten perusteella tiedon hankinnassa tulee huomioida sekä sisäisen liiketoimintatiedon analyyttinen hyödyntäminen että systemaattinen tiedon hankinta myös ulkoisista lähteistä. Yritykset kokivat Business Intelligence -toimintojen parantaneen tiedon laatua, tehostaneen toiminnanohjausta sekä mahdollistaneen yhteneväisen liiketoiminnan johtamisen organisaation eri tasoilla.