198 resultados para Special Operations Forces
Resumo:
The thesis interprets the caveat of Article 194(2) TFEU in order to assess the use of the Article as a legal basis for energy provisions provided by the European Union. The research subject is the Energy Title in the Treaty of the Functioning of the European Union and the possibilities of the application of the legal basis provided therein. The purpose is analysis of the possibilities for providing of provisions within the scope of the caveat found in Article 194(2) TFEU with special regard to the possibilities of providing renewable energy legislation. The purpose of the thesis is on one hand to provide an overview of the premises for providing of energy provisions in the EU, and on the other hand to analyse the Treaty text in order to determine the legal basis for energy provisions. The ultimate objective is to determine the correct legal basis for renewable energy provisions, aimed at the mitigation of climate change. According to Article 194(2) TFEU, the practice of the shared legislative powers in the field of energy are restricted by the retention of certain energy matters within the power of the Member States. The wording of the caveat containing the restrictions is open to interpretation and has been a subject of extensive discussion. Many scholars have argued that the caveat in Article 194(2) TFEU might obstruct decision-making in energy matters. This argument is contested, and the factual impact of the codification of the energy competences is analysed. The correct legal basis for energy provisions depends on the final interpretation of the text of the caveat and the level of significance of the effect of the measure. The use of Article 194(2) TFEU as a legal basis might not be the only option. There is a possibility that the legal bases within the Environmental Title might be used as legal bases for energy provisions in addition to Article 194(2) TFEU.
Resumo:
Project scope is to utilize Six Sigma DMAIC approach and lean principles to improve production quality of the case company. Six Sigma tools and techniques are explored through a literature review and later used in the quality control phase. The focus is set on the Pareto analysis to demonstrate the most evident development areas in the production. Materials that are not delivered to the customer or materials that damaged during transportation comprise the biggest share of all feedbacks. The goal is set to reduce these feedbacks by 50 %. Production observation pointed out that not only material shortages but also over-production is a daily situation. As a result, an initial picking list where the purchased and own production components can be seen, is created, reduction of over- and underproduction and material marking improvement are seen the most competitive options so that the goal can be reached. The picking list development should still continue to make sure that the list can be used not only in the case study but also in the industrial scale. The reduction of material missing category can be evaluated reliably not sooner than in few years because it takes time to gather the needed statistical information.
Resumo:
Increased rotational speed brings many advantages to an electric motor. One of the benefits is that when the desired power is generated at increased rotational speed, the torque demanded from the rotor decreases linearly, and as a consequence, a motor of smaller size can be used. Using a rotor with high rotational speed in a system with mechanical bearings can, however, create undesirable vibrations, and therefore active magnetic bearings (AMBs) are often considered a good option for the main bearings, as the rotor then has no mechanical contact with other parts of the system but levitates on the magnetic forces. On the other hand, such systems can experience overloading or a sudden shutdown of the electrical system, whereupon the magnetic field becomes extinct, and as a result of rotor delevitation, mechanical contact occurs. To manage such nonstandard operations, AMB-systems require mechanical touchdown bearings with an oversized bore diameter. The need for touchdown bearings seems to be one of the barriers preventing greater adoption of AMB technology, because in the event of an uncontrolled touchdown, failure may occur, for example, in the bearing’s cage or balls, or in the rotor. This dissertation consists of two parts: First, touchdown bearing misalignment in the contact event is studied. It is found that misalignment increases the likelihood of a potentially damaging whirling motion of the rotor. A model for analysis of the stresses occurring in the rotor is proposed. In the studies of misalignment and stresses, a flexible rotor using a finite element approach is applied. Simplified models of cageless and caged bearings are used for the description of touchdown bearings. The results indicate that an increase in misalignment can have a direct influence on the bending and shear stresses occurring in the rotor during the contact event. Thus, it was concluded that analysis of stresses arising in the contact event is essential to guarantee appropriate system dimensioning for possible contact events with misaligned touchdown bearings. One of the conclusions drawn from the first part of the study is that knowledge of the forces affecting the balls and cage of the touchdown bearings can enable a more reliable estimation of the service life of the bearing. Therefore, the second part of the dissertation investigates the forces occurring in the cage and balls of touchdown bearings and introduces two detailed models of touchdown bearings in which all bearing parts are modelled as independent bodies. Two multibody-based two-dimensional models of touchdown bearings are introduced for dynamic analysis of the contact event. All parts of the bearings are modelled with geometrical surfaces, and the bodies interact with each other through elastic contact forces. To assist in identification of the forces affecting the balls and cage in the contact event, the first model describes a touchdown bearing without a cage, and the second model describes a touchdown bearing with a cage. The introduced models are compared with the simplified models used in the first part of the dissertation through parametric study. Damages to the rotor, cage and balls are some of the main reasons for failures of AMB-systems. The stresses in the rotor in the contact event are defined in this work. Furthermore, the forces affecting key bodies of the bearings, cage and balls can be studied using the models of touchdown bearings introduced in this dissertation. Knowledge obtained from the introduced models is valuable since it can enable an optimum structure for a rotor and touchdown bearings to be designed.