203 resultados para Motors elèctrics -- Màrqueting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

kuv., 10 x 15 cm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

kuv., 7 x 13 cm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

kuv., 6 x 13 cm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

kuv., 27 x 20 cm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena on tutkia oikosulkumoottoreiden yhteisvarastoinnista saavutettavia verkostohyötyjä asiakas-toimittaja verkostossa. Yleisesti yhteisvarastointi mielletään järkeväksi, mutta siitä saatavat hyödyt ovat usein vaikeita arvioida. Oikosulkumoottorit ovat kalliita, usein kriittisiä yrityksen tuotannon hyödykkeitä, joiden käyttöikä on jopa 30 vuotta. Tämä asettaa erityisvaatimuksia myös moottoreiden varastoinnille. Pitkä käyttöikä alentaa varaston kysyntää, kun taas niiden kriittisyys tuotannolle edellyttää varastointia. Tuotannon menetykset mielletään usein kestämättömän kalliiksi ja tämän vuoksi ajan saatossa lähivarastoihin on kerätty huomattavia moottorivarastoja. Työssä luotiin kunnossapidon, varastoinnin ja talouden teorian pohjalta viitekehys johon tukeutuen rakennettiin yhteisvarastointiverkoston kustannusmalli. Tämän jälkeen laadittiin palvelun piiriin kuuluvilta asiakkailta saaduin varastotiedoin vertailukustannuslaskelma, josta johdettiin yhteisvarastointiverkoston hyödyt. Laskennan tuloksissa havaittiin varastoitavien oikosulkumoottoreiden määrän ja kustannusten väheneminen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent magnet drives with nominal power over 10 kW were not a cost-sufficient system 25 years ago due to high material expenses. The improvements in motor drives, the rise in competition and the tightening of standards and regulations have caused that the PM-drives are more and more common in the over 10 kW nominal power range. The goal of this thesis is to research the performance in relation to nominal power of a PM-drive technique that is vastly increasing its popularity in fan related devices. The studied motor technique brushless direct current drive (BLDC) consists of a voltage source inverter, permanent motor and six-step-control. The reference drive is a brushless alternating current drive (BLAC) which consists of a VSI, PM and a hysteresis control. As a conclusion there are no major obstacles that would impede the BLDC-drive technique from expanding to larger power stages. The following factors must be taken into consideration when designing a BLDC-drive: motor’s current change rate, inverter switching frequency, motor’s nominal electric frequency, phase inductance and the current handling capability of the inverter. The fluctuating material costs create instability to the end prices of PM-motors that can in the worst case lead to diminished interest towards BLDC- and PM-drives in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present study was to design an agricultural robot, which work is based on the generation of the electricity by the solar panel. To achieve the proper operation of the robot according to the assumed working cycle the detailed design of the main equipment was made. By analysing the possible areas of implementation together with developments, the economic forecast was held. As a result a decision about possibility of such device working in agricultural sector was made and the probable topics of the further study were found out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pumping systems account for up to 22 % of the energy consumed by electrical motors in European industry. Many studies have shown that there is also a lot of potential for energy savings in these systems with the improvement of devices, flow control or surrounding sys-tem. The best method for more energy efficient pumping has to be found for each system separately. This thesis studies how energy saving potential in reservoir pumping system is affected by surrounding variables, such as the static head variation and friction factor. The objective is to create generally applicable graphs to quickly compare methods for reducing pumping system’s energy costs. The gained results are several graphs showcasing how the chosen variables affect energy saving potential of the pumping system in one specific case. To judge if these graphs are generally applicable, more testing with different pumps and environments are required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työssä kehitettiin suurnopeuskäyttöön soveltuva kestomagnetoitu roottori olemassa olevan induktiokoneen staattorirunkoon. Kehitystyön tarkoituksena oli selvittää roottorin mekaaniset raja-arvot, kuten maksimi kehänopeus. Samalla otettiin kantaa myös tarvittaviin analysointi- ja mitoitusmenetelmiin. Maksimi kehänopeuden, laakeroinnin ja roottorin skaalattavuuden selvittäminen edellytti myös tarkkaa materiaaliselvitystä ja optimointia. Tästä syystä työn aikana tehtiin tiivistä yhteistyötä materiaalitoimittajien kanssa. Työn tuloksena syntyi uusi menetelmä toteuttaa radiaalisen magneettivuon luova kestomagneettiroottori 200 m/s kehänopeudelle. Suunniteltua roottoriratkaisua käytetään testausroottorina, jolla selvitetään valmistuksen, kokoonpanon ja sähkötehon rajoitteet käytännössä. Suunnittelutyö edellyttikin jatkuvaa iterointia sähkösuunnittelun ja roottorin osien valmistajien kanssa, jotta löydettiin paras kompromissiratkaisu roottorin prototyyppiin. Tämän seurauksena saatiin luotua varsin tarkat suunnittelu- ja analysointiraja-arvot kestomagneettiroottorin tuotteistettavia versioita varten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was done for ABB Ltd. Motors and Generators business unit in Helsinki. In this study, global data movement in large businesses is examined from a product data management (PDM) and enterprise resource planning (ERP) point-of-view. The purpose of this study was to understand and map out how a large global business handles its data in a multiple site structure and how it can be applied in practice. This was done by doing an empirical interview study on five different global businesses with design locations in multiple countries. Their master data management (MDM) solutions were inspected and analyzed to understand which solution would best benefit a large global architecture with many design locations. One working solution is a transactional hub which negates the effects of multisite transfers and reduces lead times. Also, the requirements and limitations of the current MDM architecture were analyzed and possible reform ideas given.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työssä tarkasteltiin sähköisiä tarkastusmenetelmiä oikosulkumoottorin ennaltaehkäisevälle kunnonvalvonnalle sekä näiden menetelmien toimivuutta eri vikojen havaitsemiseen. Työ to-teutettiin Porvoon Energian Tolkkisten voimalaitoksella ja se toimii samalla tarkastusohjeena työssä esitetyille tarkastusmenetelmille. Käytetyillä tarkastusmenetelmillä kyettiin havaitse-maan osa vioista ja niitä voidaan käyttää osana ennaltaehkäisevää kunnonvalvontaa. Kaikkia vikoja ei kuitenkaan työssä esitetyillä menetelmillä voitu havaita.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent magnet synchronous machines with fractional-slot non-overlapping windings (FSPMSM), also known as tooth-coil winding permanent magnet synchronous machines (TCW PMSM), have been under intensive research during the latest decade. There are many optimization routines explained and implemented in the literature in order to improve the characteristics of this machine type. This paper introduces a new technique for torque ripple minimization in TCW PMSM. The source of torque harmonics is also described. The low order torque harmonics can be harmful for a variety of applications, such as direct drive wind generators, direct drive light vehicle electrical motors, and for some high precision servo applications. The reduction of the torque ripple harmonics with the lowest orders (6th and 12th) is realized by machine geometry optimization technique using finite element analysis (FEA). The presented optimization technique includes the stator geometry adjustment in TCW PMSMs with rotor surface permanent magnets and with rotor embedded permanent magnets. Influence of the permanent magnet skewing on the torque ripple reduction and cogging torque elimination was also investigated. It was implemented separately and together with the stator optimization technique. As a result, the reduction of some torque ripple harmonics was attained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent magnet synchronous machines (PMSM) have become widely used in applications because of high efficiency compared to synchronous machines with exciting winding or to induction motors. This feature of PMSM is achieved through the using the permanent magnets (PM) as the main excitation source. The magnetic properties of the PM have significant influence on all the PMSM characteristics. Recent observations of the PM material properties when used in rotating machines revealed that in all PMSMs the magnets do not necessarily operate in the second quadrant of the demagnetization curve which makes the magnets prone to hysteresis losses. Moreover, still no good analytical approach has not been derived for the magnetic flux density distribution along the PM during the different short circuits faults. The main task of this thesis is to derive simple analytical tool which can predict magnetic flux density distribution along the rotor-surface mounted PM in two cases: during normal operating mode and in the worst moment of time from the PM’s point of view of the three phase symmetrical short circuit. The surface mounted PMSMs were selected because of their prevalence and relatively simple construction. The proposed model is based on the combination of two theories: the theory of the magnetic circuit and space vector theory. The comparison of the results in case of the normal operating mode obtained from finite element software with the results calculated with the proposed model shows good accuracy of model in the parts of the PM which are most of all prone to hysteresis losses. The comparison of the results for three phase symmetrical short circuit revealed significant inaccuracy of the proposed model compared with results from finite element software. The analysis of the inaccuracy reasons was provided. The impact on the model of the Carter factor theory and assumption that air have permeability of the PM were analyzed. The propositions for the further model development are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.