26 resultados para international construction joint venture

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Underbody plows can be very useful tools in winter maintenance, especially when compacted snow or hard ice must be removed from the roadway. By the application of significant down-force, and the use of an appropriate cutting edge angle, compacted snow and ice can be removed very effectively by such plows, with much greater efficiency than any other tool under those circumstances. However, the successful operation of an underbody plow requires considerable skill. If too little down pressure is applied to the plow, then it will not cut the ice or compacted snow. However, if too much force is applied, then either the cutting edge may gouge the road surface, causing significant damage often to both the road surface and the plow, or the plow may ride up on the cutting edge so that it is no longer controllable by the operator. Spinning of the truck in such situations is easily accomplished. Further, excessive down force will result in rapid wear of the cutting edge. Given this need for a high level of operator skill, the operation of an underbody plow is a candidate for automation. In order to successfully automate the operation of an underbody plow, a control system must be developed that follows a set of rules that represent appropriate operation of such a plow. These rules have been developed, based upon earlier work in which operational underbody plows were instrumented to determine the loading upon them (both vertical and horizontal) and the angle at which the blade was operating.These rules have been successfully coded into two different computer programs, both using the MatLab® software. In the first program, various load and angle inputs are analyzed to determine when, whether, and how they violate the rules of operation. This program is essentially deterministic in nature. In the second program, the Simulink® package in the MatLab® software system was used to implement these rules using fuzzy logic. Fuzzy logic essentially replaces a fixed and constant rule with one that varies in such a way as to improve operational control. The development of the fuzzy logic in this simulation was achieved simply by using appropriate routines in the computer software, rather than being developed directly. The results of the computer testing and simulation indicate that a fully automated, computer controlled underbody plow is indeed possible. The issue of whether the next steps toward full automation should be taken (and by whom) has also been considered, and the possibility of some sort of joint venture between a Department of Transportation and a vendor has been suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In conventional construction practices, a longitudinal joint is sawed in a PCC (Portland Cement Concrete) pavement to control concrete shrinkage cracking between two lanes of traffic. Sawing a joint in hardened concrete is an expensive and time consuming operation. The longitudinal joint is not a working joint (in comparison to a transverse joint) as it is typically tied with a tie bar at 30 inch spacing. The open joint reservoir, left by the saw blade, typically is filled or sealed with a durable crack sealant to keep incompressibles and water from getting into the joint reservoir. An experimental joint forming knife has been developed. It is installed under the paving machine to form the longitudinal joint in the wet concrete as a part of the paving process. Through this research method, forming a very narrow longitudinal joint during the paving process, two conventional paving operations can be eliminated. Joint forming eliminates the need of the joint sawing operation in the hard concrete, and as the joint that is formed does not leave a wide-open reservoir, but only a hairline crack, it does not need the joint filling or sealing operation. Therefore, the two conventional longitudinal joint sawing and sealing operations are both being eliminated by this innovation. A laboratory scale prototype joint forming knife was built and tested, initially forming joints in small concrete beams. The results were positive so the method was proposed for field testing. Initial field tests were done in the construction season of 2001, limited to one paving contractor. A number of modifications were made to the knife throughout the field tests. About 3000 feet of longitudinal joint was formed in 2001. Additional testing was done in the 2002 construction season, working with the same contractor. About 150,000 feet of longitudinal joint was formed in 2002. Evaluations of the formed joints were done to determine longitudinal joint hairline crack development rate and appearance. Additional tests will be done in the next construction season to improve or perfect the longitudinal joint forming technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proper storage practices are critical to protect materials from intermingling, contamination, or degradation, and to maintain consistent aggregate gradation throughout a project. Concrete Paving Workforce Reference no.3

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State Highway Departments and local street and road agencies are currently faced with aging highway systems and a need to extend the life of some of the pavements. The agency engineer should have the opportunity to explore the use of multiple surface types in the selection of a preferred rehabilitation strategy. This study was designed to look at the portland cement concrete overlay alternative and especially the design of overlays for existing composite (portland cement and asphaltic cement concrete) pavements. Existing design procedures for portland cement concrete overlays deal primarily with an existing asphaltic concrete pavement with an underlying granular base or stabilized base. This study reviewed those design methods and moved to the development of a design for overlays of composite pavements. It deals directly with existing portland cement concrete pavements that have been overlaid with successive asphaltic concrete overlays and are in need of another overlay due to poor performance of the existing surface. The results of this study provide the engineer with a way to use existing deflection technology coupled with materials testing and a combination of existing overlay design methods to determine the design thickness of the portland cement concrete overlay. The design methodology provides guidance for the engineer, from the evaluation of the existing pavement condition through the construction of the overlay. It also provides a structural analysis of various joint and widening patterns on the performance of such designs. This work provides the engineer with a portland cement concrete overlay solution to composite pavements or conventional asphaltic concrete pavements that are in need of surface rehabilitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The members of the Iowa Concrete Paving Association, the National Concrete Pavement Technology Center Research Committee, and the Iowa Highway Research Board commissioned a study to examine alternative ways of developing transverse joints in portland cement concrete pavements. The present study investigated six separate variations of vertical metal strips placed above and below the dowels in conventional baskets. In addition, the study investigated existing patented assemblies and a new assembly developed in Spain and used in Australia. The metal assemblies were placed in a new pavement and allowed to stay in place for 30 days before the Iowa Department of Transportation staff terminated the test by directing the contractor to saw and seal the joints. This report describes the design, construction, testing, and conclusions of the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As worldwide consumer demand for high-quality products and for information about these products increases, labels and geographical indications (GIs) can serve to signal quality traits to consumers. However, GI systems among countries are not homogeneous and can be used as trade barriers against competition. Philosophical differences between the European Union and the United States about how GIs should be registered and protected led to the formation of a WTO dispute settlement panel. In this paper we discuss the issues behind the dispute, the World Trade Organization (WTO) panel decision, and the EU response to the panel decision leading to the new Regulation 510/2006. Given the potential for GI labels to supply consumer information, context is provided for the discussion using recent literature on product labeling. Implications are drawn regarding the importance of the panel decision and the EU response relative to GI issues yet to be negotiated under the Doha Round.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this guide is to help practitioners understand how to optimize concrete pavement joint performance through the identification, mitigation, and prevention of joint deterioration. It summarizes current knowledge from research and practice to help practitioners access the latest knowledge and implement proven techniques. Emphasizing that water is the common factor in most premature joint deterioration, this guide describes various types of joint deterioration that can occur. Some distresses are caused by improper joint detailing or construction, and others can be attributed to inadequate materials or proportioning. D cracking is a form of joint distress that results from the use of poor-quality aggregates. A particular focus in this guide is joint distress due to freeze-thaw action. Numerous factors are at play in the occurrence of this distress, including the increased use of a variety of deicing chemicals and application strategies. Finally, this guide provides recommendations for minimizing the potential for joint deterioration, along with recommendations for mitigation practices to slow or stop the progress of joint deterioration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments with early entry light sawing of Portland cement concrete (PCC) contraction joints began in Iowa in 1989. Since that time, changes in early sawing equipment have occurred as well as changes in specifications for sawing. The option to use early sawing for transverse contraction joints was specified in 1992. A problem happening occasionally with early sawing was the break out of some of the concrete around the end of the joint as the saw blade approached the edge of the slab. To prevent this, it was proposed that the sawing would terminate approximately 1/2" to 3/4" before the edge of the slab, creating a "short joint". This procedure would also leave a concrete "dam" to prevent the run-out and waste of the hot liquid joint sealant onto the shoulder. It would also eliminate the need for the labor and material for applying a duct tape dam at the open ends of each sawed joint to stop hot liquid sealant run-out Agreements were made with the contractor to apply the "short joint" technique for 1 day of paving. The evaluation and results are compared with an adjoining control section. The research found no negative aspects from sawing the "short joint". Three specific findings were noted. They are the following: 1) No joint end "blow-out" spalls of concrete occurred. 2) The need for the duct tape dam to stop liquid sealant overflow was eliminated. 3) Joint end corner spalls appear to be caused mainly by construction shouldering operations equipment. The "short joint" sawing technique can be routinely applied to early entry sawed transverse contraction joints with expectations of only positive results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most pavement contraction joint seals in Iowa, in general, have been performing in less than a satisfactory manner. The effective life of the seals, in maintaining a watertight joint, has been only from two to five years. In search of improvements, research was proposed to evaluate preformed neoprene joint seals. The performance of those seals was to be compared mainly with the hot poured rubberized asphalt sealants and cold applied silicone sealants or other sealants commonly used at the time this research began. Joint designs and methods of sawing were also investigated. All evaluations were done in new portland cement concrete (PCC) pavements. Three projects were initially selected and each included a research section of joint sealing. Some additional sites were later added for evaluation. Several joint sealants were evaluated at each research site. The various sites included high, medium and low levels of traffic. Evaluations were done over a five-year period. Neoprene joint seals provided better performance than hot or cold field formed joints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Premature failure of concrete pavement contraction joint seals is an ongoing and costly problem for the Iowa Department of Transportation. Several joint seal test sections consisting of variations in sawing methods, joint cleaning techniques, sealant installation, and sealant types have been established over the past few years. Laboratory analysis and field inspections were done as a part of the tests, and core samples were taken for laboratory adhesion pull tests. Such methods often cover specifically small areas and may not expose hidden failures. Some tests are also labor-intensive and destructive, especially that of coring. An innovative, nondestructive, broad coverage joint seal tester that yields quick results has been designed and developed for evaluation of pavement joint seal performance. The Iowa vacuum joint seal tester (IA-VAC) applies a low vacuum above a joint seal that has been spray-covered with a foaming water solution. Any unsealed area or leak that exists along the joint will become quickly and clearly visible by the development of bubbles at the leak point. By analyzing the results from the IA-VAC tests, information on the number and types of leaks can be obtained; such information will help identify the source of the problem and direct efforts toward a solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The joint between two lanes of asphalt pavement is often the first area of a roadway which shows signs of deterioration and requires maintenance. As the final lift of hot asphalt is being placed in a construction project, it is being forced p against the adjoining lane of cold asphalt, forming the longitudinal joint. The mating of the two lanes, to form a high quality seal, is often not fully successful and later results in premature stripping or raveling as water enters the unsealed joint. The application of a hot poured rubberized asphaltic joint sealant along the joint face in the final stage of construction should help to form a watertight joint seal. A new product, especially formulated for the longitudinal joint in asphalt pavements was proposed to improve joint sealing. The following describes the experimental application of the new product, Crafco, PN 34524.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, the interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. Although the main factors affecting UTW performance have been identified in previous research, neither the impact that external variables have on the elements nor the element interaction have been thoroughly investigated. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. Laboratory testing and full scale field testing were planned to accomplish the research objective. Laboratory testing involved monitoring interface strains in fabricated PCC/ACC composite test beams subjected to either static or dynamic flexural loading. Variables investigated included ACC surface preparation, PCC thickness, and synthetic fiber reinforcement usage. Field testing involved monitoring PCC/ACC interface stains and temperatures, falling weight deflectometer (FWD) deflection responses, direct shear strengths, and distresses on a 7.2 mile Iowa Department of Transportation (Iowa DOT) UTW project (HR-559). The project was located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. This report documents the planning, equipment selection, and construction of the project built in 1994.