30 resultados para Quality Control Circles

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The air void analyzer (AVA) with its independent isolation base can be used to accurately evaluate the air void system—including volume of entrained air, size of air voids, and distribution of air voids—of fresh portland cement concrete (PCC) on the jobsite. With this information, quality control adjustments in concrete batching can be made in real time to improve the air void system and thus increase freeze-thaw durability. This technology offers many advantages over current practices for evaluating air in concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction of portland cement concrete pavements is a complex process. A small fraction of the concrete pavements constructed in the United States over the last few decades have either failed prematurely or exhibited moderate to severe distress. In an effort to prevent future premature failures, 17 state transportation agencies pooled their resources, and a pooled fund research project, Material and Construction Optimization for Prevention of Premature Pavement Distress in PCC Pavements, was undertaken in 2003. Its purpose was to evaluate existing quality control tests, and then select and advance the state-of-the-practice of those tests most useful for optimizing concrete pavements during mix design, mix verification, and construction. This testing guide is one product of that project. The guide provides three recommended testing schemes (Levels A, B, and C, depending on a pavement’s design life and traffic volumes, etc.) that balance the costs of testing with the risk of failure for various project types. The recommended tests are all part of a comprehensive suite of tests described in detail in this guide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report discusses the feasibility of using infrared photoacoustic spectroscopy (PAS) as a viable technique that can quickly provide information on cement composition prior to use. The PAS technique is of interest because the cost is much lower than for other types of instrumentation used for mineral analysis, it requires virtually no sample preparation, and it can perform multi-component analysis in a matter of minutes. Feasibility of the technique was based on the ability of PAS to identify and quantify sulfate species and major cement matrix components. Strengths and limitations of the technique are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phase II research included the following: (1) develop and evaluate alternative soil design and embankment construction specifications based on soil type, moisture, density, stability, and compaction process; (2) assess various quality control and acceptance procedures with a variety of in-situ test methods including the Dual-mass Dynamic Cone Penetrometer (DCP); and (3) develop and design rapid field soil identification methods. At the start of the research, soils were divided into cohesive and cohesionless soil types, with each category being addressed separately. Cohesionless soils were designated as having less than 36% fines content (material passing the No. 200 sieve) and cohesive soils as having greater than 36% fines content. Subsequently, soil categories were refined based not only on fines content but soil plasticity as well. Research activities included observations of fill placement, in-place moisture and density testing, and dual-mass DCP index testing on several highway embankment projects throughout Iowa. Experiments involving rubber-tired and vibratory compaction, lift thickness changes, and disk aeration were carried out for the full range of Iowa soils. By testing for soil stability the DCP was found to be a valuable field tool for quality control, whereby shortcomings from density testing (density gradients) were avoided. Furthermore, critical DCP index values were established based on soil type and compaction moisture content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Quality Management Earthwork (QM-E) special provision was implemented on a pilot project to evaluate quality control (QC) and quality assurance (QA) testing in predominately unsuitable soils. Control limits implemented on this pilot project included the following: 95% relative compaction, moisture content not exceeding +/- 2% of optimum moisture content, soil strength not exceeding a dynamic cone penetrometer (DCP) index of 70 mm/blow, vertical uniformity not exceeding a variation in DCP index of 40 mm/blow, and lift thickness not exceeding depth determined through construction of control strips. Four-point moving averages were used to allow for some variability in the measured parameter values. Management of the QC/QA data proved to be one of the most challenging aspects of the pilot project. Implementing use of the G-RAD data collection system has considerable potential to reduce the time required to develop and maintain QC/QA records for projects using the QM-E special provision. In many cases, results of a single Proctor test were used to establish control limits that were used for several months without retesting. While the data collected for the pilot project indicated that the DCP index control limits could be set more tightly, there is not enough evidence to support making a change. In situ borings, sampling, and testing in natural unsuitable cut material and compacted fill material revealed that the compacted fill had similar strength characteristics to that of the natural cut material after less than three months from the start of construction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report describes test results from a full-scale embankment pilot study conducted in Iowa. The intent of the pilot project was to field test and refine the proposed soil classification system and construction specifications developed in Phase II of this research and to evaluate the feasibility of implementing a contractor quality control (QC) and Iowa DOT quality assurance (QA) program for earthwork grading in the future. One of the primary questions for Phase III is “Was embankment quality improved?” The project involved a “quality conscious” contractor, well-qualified and experienced Iowa Department of Transportation field personnel, a good QC consultant technician, and some of our best soils in the state. If the answer to the above question is “yes” for this project, it would unquestionably be “yes” for other projects as well. The answer is yes, the quality was improved, even for this project, as evidenced by dynamic cone penetrometer test data and the amount of disking required to reduce the moisture content to within acceptable control limits (approximately 29% of soils by volume required disking). Perhaps as important is that we know what quality we have. Increased QC/QA field testing, however, increases construction costs, as expected. The quality management-earthwork program resulted in an additional $0.03 per cubic meter, or 1.6%, of the total construction costs. Disking added about $0.04 per cubic meter, or 1.7%, to the total project costs. In our opinion this is a nominal cost increase to improve quality. It is envisioned that future contractor innovations have the potential for negating this increase. The Phase III results show that the new soil classification system and the proposed field test methods worked well during the Iowa Department of Transportation soils design phase and during the construction phase. Recommendations are provided for future implementation of the results of this study by city, county, and state agencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current monitoring techniques for determination of compaction of earthwork and asphalt generally involve destructive testing of the materials following placement. Advances in sensor technologies show significant promise for obtaining necessary information through nondestructive and remote techniques. To develop a better understanding of suitable and potential technologies, this study was undertaken to conduct a synthesis review of nondestructive testing technologies and perform preliminary evaluations of selected technologies to better understand their application to testing of geomaterials (soil fill, aggregate base, asphalt, etc.). This research resulted in a synthesis of potential technologies for compaction monitoring with a strong emphasis on moisture sensing. Techniques were reviewed and selectively evaluated for their potential to improve field quality control operations. Activities included an extensive review of commercially available moisture sensors, literature review, and evaluation of selected technologies. The technologies investigated in this study were dielectric, nuclear, near infrared spectroscopy, seismic, electromagnetic induction, and thermal. The primary disadvantage of all the methods is the small sample volume measured. In addition, all the methods possessed some sensitivity to non-moisture factors that affected the accuracy of the results. As the measurement volume increases, local variances are averaged out providing better accuracy. Most dielectric methods with the exception of ground penetrating radar have a very small measurement volume and are highly sensitive to variations in density, porosity, etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pavement settlement occurring in and around utility cuts is a common problem, resulting in uneven pavement surfaces, annoyance to drivers, and ultimately, further maintenance. A survey of municipal authorities and field and laboratory investigations were conducted to identify the factors contributing to the settlement of utility cut restorations in pavement sections. Survey responses were received from seven cities across Iowa and indicate that utility cut restorations often last less than two years. Observations made during site inspections showed that backfill material varies from one city to another, backfill lift thickness often exceeds 12 inches, and the backfill material is often placed at bulking moisture contents with no Quality control/Quality Assurance. Laboratory investigation of the backfill materials indicate that at the field moisture contents encountered, the backfill materials have collapse potentials up to 35%. Falling Weight Deflectometer (FWD) deflection data and elevation shots indicate that the maximum deflection in the pavement occurs in the area around the utility cut restoration. The FWD data indicate a zone of influence around the perimeter of the restoration extending two to three feet beyond the trench perimeter. The research team proposes moisture control, the use of 65% relative density in a granular fill, and removing and compacting the native material near the ground surface around the trench. Test sections with geogrid reinforcement were also incorporated. The performance of inspected and proposed utility cuts needs to be monitored for at least two more years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This manual describes best roadway maintenance practices for Iowa's local roads and streets, from the center line to shoulders, ditches, and drainage, with chapters on public relations, bridge maintenance, and snow and ice control. Each chapter contains safety tips, information(as appropriate) on managing quality control, and a list of references for further information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At the heart of all concrete pavement projects is the concrete itself. This manual is intended as both a training tool and a reference to help concrete paving engineers, quality control personnel, specifiers, contractors, suppliers, technicians, and tradespeople bridge the gap between recent research and practice regarding optimizing the performance of concrete for pavements. Specifically, it will help readers do the following:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Density is an important component of hot-mix asphalt (HMA) pavement quality and long-term performance. Insufficient density of an in-place HMA pavement is the most frequently cited construction-related performance problem. This study evaluated the use of electromagnetic gauges to nondestructively determine densities. Field and laboratory measurements were taken with two electromagnetic gauges—a PaveTracker and a Pavement Quality Indicator (PQI). Test data were collected in the field during and after paving operations and also in a laboratory on field mixes compacted in the lab. This study revealed that several mix- and project-specific factors affect electromagnetic gauge readings. Consequently, the implementation of these gauges will likely need to be done utilizing a test strip on a project- and mix-specific basis to appropriately identify an adjustment factor for the specific electromagnetic gauge being used for quality control and quality assurance (QC/QA) testing. The substantial reduction in testing time that results from employing electromagnetic gauges rather than coring makes it possible for more readings to be used in the QC/QA process with real-time information without increasing the testing costs.