19 resultados para Polymeric admixtures

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridge deck cracking occasionally occurs during construction for any number of reasons. Improper design, concrete placement or deck curing can result in cracks. One contributing factor toward cracking may be dead load deflections induced during concrete placement. For both continuous and non-continuous bridges, specific placement sequences are required to minimize harmful deflections in previously placed sections. Set retarding admixtures are also used to keep previously placed concrete plastic until the pour is completed. The problem is--at what point does movement of the concrete cause permanent damage to the deck. The study evaluated the time to crack formation relationship for mixes with low and high dosages of set retarding admixtures currently approved for use in Iowa state and county projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report concerns the stabilization of three crushed limestones by an ss-1 asphalt emulsion and an asphalt cement, 120-150 penetration. Stabilization is evaluated by marshall stability and triaxial shear tests. Test specimens were compacted by the marshall, standard proctor and vibratory methods. Stabilization is evaluated primarily by triaxial shear tests in which confining pressures of 0 to 80 psi were used. Data were obtained on the angle of internal friction, cohesion, volume change, pore water pressure and strain characteristics of the treated and untreated aggregates. The MOHR envelope, bureau of reclamation and modified stress path methods were used to determine shear strength parameters at failure. Several significant conclusions developed by the authors are as follows: (1) the values for effective angle of internal friction and effective cohesion were substantially independent of asphalt content, (2) straight line MOHR envelopes of failure were observed for all treated stones, (3) bituminous admixtures did little to improve volume change (deformation due to load) characteristics of the three crushed limestones, (4) with respect to pore water characteristics (pore pressures and suctions due to lateral loading), bituminous treatment notably improved only the bedford stone, and (5) at low lateral pressures bituminous treatments increased stability by limiting axial strain. This would reduce rutting of highway bases. At high lateral pressures treated stone was less stable than untreated stone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation has been conducted on core samples taken from 17 portland cement concrete pavements located in Iowa. The goal of the investigation was to help to clarify the root cause of the premature deterioration problem that has become evident since the early 1990s. Laboratory experiments were also conducted to evaluate how cement composition, mixing time, and admixtures could have influenced the occurrence of premature deterioration. The cements used in this study were selected in an attempt to cover the main compositional parameters pertinent to the construction industry in Iowa. The hardened air content determinations conducted during this study indicated that the pavements that exhibited premature deterioration often contained poor to marginal entrained-air void systems. In addition, petrographic studies indicated that sometimes the entrained-air void system had been marginal after mixing and placement of the pavement slab, while in other instances a marginal to adequate entrained-air void system had been filled with ettringite. The filling was most probably accelerated because of shrinkage cracking at the surface of the concrete pavements. The results of this study suggest that the durability—more sciecifically, the frost resistance—of the concrete pavements should be less than anticipated during the design stage of the pavements. Construction practices played a significant role in the premature deterioration problem. The pavements that exhibited premature distress also exhibited features that suggested poor mixing and poor control of aggregate grading. Segregation was very common in the cores extracted from the pavements that exhibited premature distress. This suggests that the vibrators on the paver were used to overcome a workability problem. Entrained-air voids formed in concrete mixtures experiencing these types of problems normally tend to be extremely coarse, and hence they can easily be lost during the paving process. This tends to leave the pavement with a low air content and a poor distribution of air voids. All of these features were consistent with a premature stiffening problem that drastically influenced the ability of the contractor to place the concrete mixture. Laboratory studies conducted during this project indicated that most premature stiffening problems can be directly attributed to the portland cement used on the project. The admixtures (class C fly ash and water reducer) tended to have only a minor influence on the premature stiffening problem when they were used at the dosage rates described in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemistry of today’s concrete mixture designs is complicated by many variables, including multiple sources of aggregate and cements and a plethora of sometimes incompatible mineral and chemical admixtures. Concrete paving has undergone significant changes in recent years as new materials have been introduced into concrete mixtures. Supplementary cementitious materials such as fly ash and ground granulated blast furnace slag are now regularly used. In addition, many new admixtures that were not even available a few years ago now have widespread usage. Adding to the complexity are construction variables such as weather, mix delivery times, finishing practices, and pavement opening schedules. Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects and is affected by the other in ways that determine overall pavement quality and long-term performance. Equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving serious gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fly ash was used to replace 15% of the cement in C3WR and C6WR concrete paving mixes containing ASTM C494 Type A water reducin9 admixtures. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. When Class C ashes were used they were substituted on the basis of 1 pound of ash added for each pound of cement deleted. When Class F was used it was substituted on the basis of 1.25 pounds of ash added for each pound of cement deleted. Compressive strengths of the water reduced mixes, with and without fly ash, were determined at 7, 28, and 56 days of age. In every case except one the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. An excellent correlation existed between the C3WR and C6WR mixes both with and without fly ash substitutions. The freeze-thaw durability of the concrete studied was not affected by presence or absence of fly ash. The data gathered suggests that the present Class C water reduced concrete paving mixes can be modified to allow the substitution of 15% of the cement with an approved fly ash.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the project was to develop a new type of self-consolidating concrete (SCC) for slip-form paving to simplify construction an make smoother pavements. Developing the new SCC involved two phases: a feasibility study (Phase I sponsored by TPF-5[098] and concrete admixtures industry) and an in-depth mix proportioning and performance study and field applications (Phase II). The phase I study demonstrated that the new type of SCC needs to possess not only excellent self-consolidating ability before a pavement slab is extruded, but also sufficient “green” strength (the strength of the concrete in a plastic state) after the extrusion. To meet these performance criteria, the new type of SCC mixtures should not be as fluid as conventional SCC but just flowable enough to be self-consolidating. That is, this new type of SCC should be semi-flowable self-consolidating concrete (SFSCC). In the phase II study, effects of different materials and admixtures on rheology, especially the thixotropy, and green strength of fresh SFSCC have been further investigated. The results indicate that SFSCC can be designed to (1) be workable enough for machine placement, (2) be self-consolidating without segregation, (3) hold its shape after extrusion from a paver, and (4) have performance properties (strength and durability) comparable with current pavement concrete. Due to the combined flowability (for self-consolidation) and shape-holding ability (for slip-forming) requirements, SFSCC demands higher cementitious content than conventional pavement concrete. Generally, high cementitious content is associated with high drying shrinkage potential of the concrete. However, well-proportioned and well-constructed SFSCC in a bike path constructed at Ames, IA, has not shown any shrinkage cracks after approximately 3 years of field service. On the other hand, another SFSCC pavement with different mix proportions and construction conditions showed random cracking. The results from the field SFSCC performance monitoring implied that not only the mix proportioning method but also the construction practice is important for producing durable SFSCC pavements. A carbon footprint, energy consumption, and cost analysis conducted in this study have suggested that SFSCC is economically comparable to conventional pavement concrete in fixed-form paving construction, with the benefit of faster, quieter, and easier construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research investigated the effects of changing the cementitious content required at a given water-to-cement ratio (w/c) on workability, strength, and durability of a concrete mixture. An experimental program was conducted in which 64 concrete mixtures with w/c ranging between 0.35 and 0.50, cementitious content ranging from 400 to 700 per cubic yard (pcy), and containing four different supplementary cementitious material (SCM) combinations were tested. The fine-aggregate to total-aggregate ratio was fixed at 0.42 and the void content of combined aggregates was held constant for all the mixtures. Fresh (i.e., slump, unit weight, air content, and setting time) and hardened properties (i.e., compressive strength, chloride penetrability, and air permeability) were determined. The hypothesis behind this study is that when other parameters are kept constant, concrete properties such as strength, chloride penetration, and air permeability will not be improved significantly by increasing the cement after a minimum cement content is used. The study found that about 1.5 times more paste is required than voids between the aggregates to obtain a minimum workability. Below this value, water-reducing admixtures are of no benefit. Increasing paste thereafter increased workability. In addition, for a given w/c, increasing cementitious content does not significantly improve compressive strength once the critical minimum has been provided. The critical value is about twice the voids content of the aggregate system. Finally, for a given w/c, increasing paste content increases chloride penetrability and air permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research investigated the effects of changing the cementitious content required at a given water-to-cement ratio (w/c) on workability, strength, and durability of a concrete mixture. An experimental program was conducted in which 64 concrete mixtures with w/c ranging between 0.35 and 0.50, cementitious content ranging from 400 to 700 per cubic yard (pcy), and containing four different supplementary cementitious material (SCM) combinations were tested. The fine-aggregate to total-aggregate ratio was fixed at 0.42 and the void content of combined aggregates was held constant for all the mixtures. Fresh (i.e., slump, unit weight, air content, and setting time) and hardened properties (i.e., compressive strength, chloride penetrability, and air permeability) were determined. The hypothesis behind this study is that when other parameters are kept constant, concrete properties such as strength, chloride penetration, and air permeability will not be improved significantly by increasing the cement after a minimum cement content is used. The study found that about 1.5 times more paste is required than voids between the aggregates to obtain a minimum workability. Below this value, water-reducing admixtures are of no benefit. Increasing paste thereafter increased workability. In addition, for a given w/c, increasing cementitious content does not significantly improve compressive strength once the critical minimum has been provided. The critical value is about twice the voids content of the aggregate system. Finally, for a given w/c, increasing paste content increases chloride penetrability and air permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-performance concrete (HPC) overlays have been used increasingly as an effective and economical method for bridge decks in Iowa and other states. However, due to its high cementitious material content, HPC often displays high shrinkage cracking potential. This study investigated the shrinkage behavior and cracking potential of the HPC overlay mixes commonly used in Iowa. In the study, 11 HPC overlay mixes were studied. These mixes consisted of three types of cements (Type I, I/II, and IP) and various supplementary cementitious materials (Class C fly ash, slag and metakaolin). Limestone with two different gradations was used as coarse aggregates in 10 mixes and quartzite was used in one mix. Chemical shrinkage of pastes, free drying shrinkage, autogenous shrinkage of mortar and concrete, and restrained ring shrinkage of concrete were monitored over time. Mechanical properties (such as elastic modulus and compressive and splitting tensile strength) of these concrete mixes were measured at different ages. Creep coefficients of these concrete mixes were estimated using the RILEM B3 and NCHRP Report 496 models. Cracking potential of the concrete mixes was assessed based on both ASTM C 1581 and simple stress-to-strength ratio methods. The results indicate that among the 11 mixes studied, three mixes (4, 5, and 6) cracked at the age of 15, 11, and 17 days, respectively. Autogenous shrinkage of the HPC mixes ranges from 150 to 250 microstrain and free dying shrinkage of the concrete ranges from 700 to 1,200 microstrain at 56 days. Different concrete materials (cementitious type and admixtures) and mix proportions (cementitious material content) affect concrete shrinkage in different ways. Not all mixes having a high shrinkage value cracked first. The stresses in the concrete are associated primarily with the concrete shrinkage, elastic modulus, tensile strength, and creep. However, a good relationship is found between cementitious material content and total (autogenous and free drying) shrinkage of concrete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of concrete admixtures are presently used in various concretes principally for water reduction, retardation, or air entrainment. Whereas the use of these admixtures in concrete placement is well documented, there is limited information showing their effects on durability and drying shrinkage. Since the durability and the shrinkage of concrete can have a pronounce effect on a structures longevity, wear characteristics, and reaction to loading, it is desirable to know the relative effects of different admixtures prior to concrete placement. The purpose of this study is to provide information which could be used to establish durability and shrinkage criterion for evaluating the admixtures currently in use and those whose use may be proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was made of the detrimental effects of trace amounts of calcium sulfate (occurring naturally in halite deposits used for deicing) on portland cement concrete pavements. It was found that sulfate introduced as gypsum with sodium chloride in deicing brines can have detrimental effects on portland cement mortar. Concentrations of sulfate as low as 0.5% of the solute rendered the brine destructive. Conditions of brine application were critical to specimen durability. The mechanisms of deterioration were found to be due to pore filling resulting from compound formation and deposition. A field evaluation of deteriorating joints suggests that the sulfate phenomena demonstrated in the laboratory also operates in the field. A preliminary evaluation was made of remedies: limits on sulfates, fly ash admixtures, treatment of existing pavement, and salt treatments. This report gives details of the research objectives, experimental design, field testing, and possible solutions. Recommendations for further study are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A water reducing and retarding type admixture in concrete is commonly used on continuous bridge deck pours in Iowa. The concrete placed in the negative moment areas must remain plastic until all the dead load deflection due to the new deck's weight occurs. If the concrete does not remain plastic until the total deflection has occurred, structural cracks will develop in these areas. Retarding type admixtures will delay the setting time of concrete and prevent structural cracks if added in the proper amounts. In Section 2412.02 of the Standard Specifications, 1972, Iowa State Highway Commission, it states, "The admixture shall be used in amounts recommended by the manufacturer for conditions which prevail on the project and as approved by the engineer." The conditions which prevail on the project depend on temperature, humidity, wind conditions, etc. Each of these factors will affect the setting rate of the plastic concrete. The purpose of this project is to provide data that will be useful to field personnel concerning the retardation of concrete setting times, and how the of sets will vary with different addition rates and curing temperatures holding all other atmospheric variables constant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A research project involving 2, 3, 4, and 5 in. (5.1, 7.6, 10.2, and 12.7 cm) of bonded portland cement concrete (PCC) overlay on a 1.3 mile (2.1 km) PCC pavement was conducted in Clayton County, Iowa, during September 1977, centering on the following objectives: (1) Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense PCC mixture using standard mixes with super water reducing admixtures; (2) Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced PCC resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super water reducing admixtures; and (3) Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced PCC can be obtained with only special surface cleaning and no surface removal or grinding. The conclusions are as follows: (1) Normal mixing equipment and proportioning procedures could be used using a conventional central-mix proportioning plant. This was successful when used with super water reducing admixtures. Only minor changes need be made in procedures and timing. (2) The time has been too short since the completion of the project to determine how the new pavement will perform, however, initially it appears that the method is economical and no reason is seen at this time why the life of the pavement should not be comparable to an all new pavement. (3) The initial test results show that bond strength, regardless of which method of cleaning is used, scarifying, sand blasting or water blasting, far exceed what is considered the minimum bond strength of 200 psi (1379 kPa) except where the paint stripes were intentionally left, thus showing that the paint must be removed. (4) It appears that either cement and water grout or sand, cement and water grout may be used and still obtain the required bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are projects where opening the pavement to traffic in less than the 5 to 7 days is needed, but an 8 to 12 hour opening time is not necessary. The study examined fast track concrete with Type I cement and admixtures. The variables studied were: (1) cure temperature, (2) cement brand, (3) accelerators, and (4) water reducers. A standard water reducer and curing blankets appear to be effective at producing a 24 hour to 36 hour opening strength. An accelerator and/or high range water reducer may produce opening strength in 12 to 24 hours. Calcium chloride was most effective at achieving high-early strength.