249 resultados para Highway
Resumo:
Many accidents involving Iowa snowplows have happened in recent years. This study investigated the influence of time of day, sex of subject, type of snowplow sign and snowplow speed on the criteria of oncoming driver reaction time and his estimate of snowplow speed. Film strips were made of a car passing a snow-Plow under various experimental conditions. These experimental movie strips were viewed in the laboratory by college student drivers who were asked to indicate their reaction time to slow down and to estimate the speed of the snowplow being passed. The generally best sign condition for the snowplow was to have a striped rear sign and a speed-proportional flashing light in addition to the standard rotating beacon on top of the truck. Several recommendations were made.
Wind Tunnel Analysis of the Effects of Planting at Highway Grade Separation Structures, HR-202, 1979
Resumo:
Blowing and drifting snow has been a problem for the highway maintenance engineer virtually since the inception of the automobile. In the early days, highway engineers were limited in their capability to design and construct drift free roadway cross sections, and the driving public tolerated the delays associated with snow storms. Modern technology, however, has long since provided the design expertise, financial resources, and construction capability for creating relatively snowdrift free highways, and the driver today has come to expect a highway facility that is free of snowdrifts, and if drifts develop they expect highway maintenance crews to open the highway within a short time. Highway administrators have responded to this charge for better control of snowdrifting. Modern highway designs in general provide an aerodynamic cross section that inhibits the deposition of snow on the roadway insofar as it is economically feasible to do so.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges are scheduled for removal. Five of these are old high-truss single-lane bridges, each bridge having several simple spans. The other bridge is a fairly modern (1955) double 4-span continuous beam-and-slab composite highway bridge. The availability of these bridges affords an unusual opportunity for study of the behavior of full-scale bridges. Because of the magnitude of the potential testing program, a feasibility study was initiated and the results are presented in this two-part final report. Part I summarizes the findings and Part II presents the supporting detailed information.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pin-connected, high-truss, single-lane bridge, was selected for a comprehensive testing program which included ultimate load tests, service load tests, and a supplementary test program. A second bridge was used for a limited service load test program. The results of the research are detailed in two interim reports. The first interim report outlines the ultimate load tests and the second interim report details the results of the service load and supplementary test program. This report presents a summary of these findings along with recommendations for implementation of the findings.
Resumo:
Borrow areas are created where soil is removed to provide needed fill material for highway and other construction projects. Where these areas are located beyond the highway right-of-way, they must be restored and returned to useful purposes. In Iowa, borrow areas are often developed on agricultural lands and therefore, it is necessary to return them to agricultural uses whenever possible. This research project was established to evaluate the changes in row crop productivity where borrow is removed for highway construction. Secondly, several reclamation techniques were selected to be applied to borrow area research sites and the response of crops to each treatment will be evaluated. All borrow area research sites were selected in 1977 from Iowa Department of Transportation construction plans. The Audubon and Buchanan County sites were completed in the fall of 1977 and May 1978, respectively. Both were used for research in 1978, 1979, and 1980. The two remaining sites in Hamilton and Lee Counties were completed in the fall of 1978 and research was conducted at these sites in 1979, 1980, and 1981. In this report, the 1981 results from the Hamilton and Lee County borrow sites will be presented. Secondly, a summary of the three years of research from each borrow area will be presented along with specific and general conclusions from the research project.
Resumo:
An optimum allocation model has been utilized to examine the existing allocation of highway segments to maintenance garages in the Hamlin study area. The model has also been used to evaluate the financial effect of closing the garage at Hamlin. The examination of the study area shows that only three of 48 highway segments should be reallocated at an annual operational savings of approximately $1,400. The study concludes there would be an annual operational savings of approximately 128,700 if the garage at Hamlin were closed.
Resumo:
During the 1980-81 fiscal year, the Office of Transportation Research conducted a study to examine the existing locations of highway maintenance garages in a study area provided by the Office of Maintenance. The study successfully identified a model referred to as an "Optimum Allocation Model" for examining highway maintenance garage locations in a given area. This model can optimally assign highway segments to maintenance garages and can also be used to evaluate the financial impact of closing or relocating a highway maintenance garage utilizing the highway maintenance-related data currently available at the Iowa DOT. The present study employs the optimum allocation model to examine the existing highway maintenance garage locations in two selected areas in the southeastern and southwestern parts of the state. These areas were selected by the Office of Maintenance and are referred to as "Study Area No. 1" and "Study Area No. 2" in this study. These study areas are shown in Appendices 1 and 2, respectively.
Examination of Existing Highway Maintenance Garage Locations in Tama and Blairstown Study Area, 1983
Resumo:
An optimum allocation model has been utilized to examine the existing allocation of highway segments to maintenance garages in the Tama and Blairstown study area. The model has also been used to evaluate the financial impact of closing the highway maintenance garages at Tama and Blairstown and building a new garage at the junction of U.S. 30 and Iowa 21. The examination of the study area shows that only 13 of 91 highway segments were reallocated under optimum procedures at an annual operational savings of approximately $13,200. The study concludes there would be an annual operational savings of approximately $48,200 if the garages at Tama and Blairstown were closed and a new garage was built at the junction of U.S. 30 and Iowa 21.
Resumo:
A linear programming model is used to optimally assign highway segments to highway maintenance garages using existing facilities. The model is also used to determine possible operational savings or losses associated with four alternatives for expanding, closing and/or relocating some of the garages in a study area. The study area contains 16 highway maintenance garages and 139 highway segments. The study recommends alternative No. 3 (close Tama and Blairstown garages and relocate new garage at Jct. U.S. 30 and Iowa 21) at an annual operational savings of approximately $16,250. These operational savings, however, are only the guidelines for decisionmakers and are subject to the required assumptions of the model used and limitations of the study.
Resumo:
In June 2001, the Iowa Department of Transportation announced the imminent closure and disposal of selected highway maintenance facilities as part of cost-cutting measures mandated by the Iowa legislature, an action that was to be completed by July 31, 2001. The DOT recognized that some of these facilities might be "historical sites," which in the Iowa Code are defined as any district, site, building or structure listed on the National Register of Historic Places or identified as eligible for listing in the National Register by the State Historic Preservation Office. Section 303 of the Code requires state agencies to "enter into an agreement with the Department of Cultural Affairs [in which the SHPO is located] to ensure the proper management, maintenance and development of historical sites." The DOT saw this disposal action as an opportunity to compile information about its highway maintenance facilities that could be employed in development of a management program for historic highway maintenance facilities in the future. Subsequently, the DOT authorized a similar study of highway weigh stations.
Resumo:
Highway maintenance engineers and administrators are often confronted with a number of problems related to highway maintenance work programs. One of these problems is concerned with determining the optimum number and locations of highway maintenance garages in a given area. Serious decline in highway revenues and a high inflation rate have made it necessary to examine existing maintenance practices and to allocate reduced financial resources more effectively and efficiently. Searching for and providing of reasonable solutions to these problems is the focus of this research project. The methodology used is to identify and modify for use (if necessary) those models which have already been developed. Models which could give optimum number and locations of highway maintenance garages were found to be too theoretical and/or practically infeasible. Consequently, research focus was shifted from these models to other models that could compare alternatives and select the best among these alternatives. Three such models -- the Alabama model, California model, and Louisiana model, were identified and studied.
Resumo:
When referenced, the 2012 edition of the Iowa Department of Transportation’s (Iowa DOT) Standard Specifications for Highway and Bridge Construction shall be used for contract work awarded by the Iowa DOT. They may also be incorporated by reference in other contract work on secondary, urban, local systems, or other contract work in which the Iowa DOT has an interest. As modified by the General Supplemental Specifications, these Standard Specifications represent the minimum requirements and may be modified by Supplemental Specifications, Developmental Specifications, and Special Provisions on specific contracts. These Standard Specifications have been written so the Contractor’s responsibilities are indicated by plain language using the Imperative Mood and Active Voice form. Sentences are of the form: Construct isolation joints at all points where driveways meet other walks, curbs, or fixtures in the surface. Ensure finished members are true to detailed dimensions and free from twists, bends, open joints, or other defects resulting from faulty fabrication or defective work. Personnel preparing the JMF shall be Iowa DOT certified in bituminous mix design. The Contracting Authority’s responsibilities are (with some exceptions) indicated by the use of the modal verb “will”. Sentences are of the form: The Engineer will obtain and test density samples for each lot according to Materials I.M. 204. Payment will be the contract unit price for Fabric Reinforcement per square yard (square meter). These standard specifications contain dual units of measure: the United States Standard measure (English units) and the International System of Units (SI or “metric” units). The English units are expressed first then followed by the metric units in parentheses. The measurements expressed in the two systems are not necessarily equal. In some cases the measurements in metric units is a “hard” conversion of the English measurement; i.e. the metric unit has been approximated with a rounded, rationalized metric measurement that is easy to work with and remember. The proposal form will identify whether the work was designed and shall be constructed in English or metric units.
Resumo:
This report documents Phase II activities of a potentially four-phase project. The goal of the project is to study the feasibility of using advanced technologies from other industries to improve the efficiency and safety of winter highway maintenance vehicle operations. State departments of transportation from Iowa, Minnesota, and Michigan initially formed the study consortium, and several private vendors have become project partners. The Center for Transportation Research and Education (CTRE) at Iowa State University is managing project tasks
Resumo:
This project examines similarities and differences between the automated condition data collected on and off county paved roads and the manual condition data collected by Iowa Department of Transportation (DOT) staff in 2000 and 2001. Also, the researchers will provide staff support to the advisory committee in exploring other options to the highway need process. The results show that the automated condition data can be used in a converted highway needs process with no major differences between the two methods. Even though the foundation rating difference was significant, the foundation rating weighting factor in HWYNEEDS is minimal and should not have a major impact. In terms of RUTF formula based distribution, the results clearly show the superiority of the condition-based analysis compared to the non-condition based. That correlation can be further enhanced by adding more distress variables to the analysis.
Resumo:
Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.