29 resultados para similar tests
Resumo:
This paper presents the results of the static and dynamic testing of a three-span continuous I-beam highway bridge. Live load stress frequency curves for selected points are shown, and the static and dynamic load distribution to the longitudinal composite beam members are given. The bridge has four traffic lanes with a roadway width of 48 ft. Six longitudinal continuous WF beams act compositely with the reinforced concrete slab to carry the live load. The beams have partial length cover plates at the piers. Previous research has indicated that beams with partial length cover plates have a very low fatigue strength. It was found in this research that the magnitude of the stresses due to actual highway loads were very much smaller than those computed from specification loading. Also, the larger stresses which were measured occurred a relatively small number of times. These data indicate that some requirements for reduced allowable stresses at the ends of cover plates are too conservative. The load distribution to the longitudinal beams was determined for static and moving loads and includes the effect of impact on the distribution. The effective composite section was found at various locations to evaluate the load distribution data. The composite action was in negative as well as positive moment regions. The load distribution data indicate that the lateral distribution of live load is consistent with the specifications, but that there is longitudinal distribution, and therefore the specifications are too conservative.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges are scheduled for removal. Five of these are old high-truss single-lane bridges, each bridge having several simple spans. The other bridge is a fairly modern (1955) double 4-span continuous beam-and-slab composite highway bridge. The availability of these bridges affords an unusual opportunity for study of the behavior of full-scale bridges. Because of the magnitude of the potential testing program, a feasibility study was initiated and the results are presented in this two-part final report. Part I summarizes the findings and Part II presents the supporting detailed information.
Resumo:
Due to frequent accidental damage to prestressed concrete (P/C) bridges caused by impact from overheight vehicles, a project was initiated to evaluate the strength and load distribution characteristics of damaged P/C bridges. A comprehensive literature review was conducted. It was concluded that only a few references pertain to the assessment and repair of damaged P/C beams. No reference was found that involves testing of a damaged bridge(s) as well as the damaged beams following their removal. Structural testing of two bridges was conducted in the field. The first bridge tested, damaged by accidental impact, was the westbound (WB) I-680 bridge in Beebeetown, Iowa. This bridge had significant damage to the first and second beams consisting of extensive loss of section and the exposure of numerous strands. The second bridge, the adjacent eastbound (EB) structure, was used as a baseline of the behavior of an undamaged bridge. Load testing concluded that a redistribution of load away from the damaged beams of the WB bridge was occurring. Subsequent to these tests, the damaged beams in the WB bridge were replaced and the bridge retested. The repaired WB bridge behaved, for the most part, like the undamaged EB bridge indicating that the beam replacement restored the original live load distribution patterns. A large-scale bridge model constructed for a previous project was tested to study the changes in behavior due to incrementally applied damage consisting initially of only concrete removal and then concrete removal and strand damage. A total of 180 tests were conducted with the general conclusion that for exterior beam damage, the bridge load distribution characteristics were relatively unchanged until significant portions of the bottom flange were removed along with several strands. A large amount of the total applied moment to the exterior beam was redistributed to the interior beam of the model. Four isolated P/C beams were tested, two removed from the Beebeetown bridge and two from the aforementioned bridge model. For the Beebeetown beams, the first beam, Beam 1W, was tested in an "as removed" condition to obtain the baseline characteristics of a damaged beam. The second beam, Beam 2W, was retrofit with carbon fiber reinforced polymer (CFRP) longitudinal plates and transverse stirrups to strengthen the section. The strengthened Beam was 12% stronger than Beam 1W. Beams 1 and 2 from the bridge model were also tested. Beam 1 was not damaged and served as the baseline behavior of a "new" beam while Beam 2 was damaged and repaired again using CFRP plates. Prior to debonding of the plates from the beam, the behavior of both Beams 1 and 2 was similar. The retrofit beam attained a capacity greater than a theoretically undamaged beam prior to plate debonding. Analytical models were created for the undamaged and damaged center spans of the WB bridge; stiffened plate and refined grillage models were used. Both models were accurate at predicting the deflections in the tested bridge and should be similarly accurate in modeling other P/C bridges. The moment fractions per beam were computed using both models for the undamaged and damaged bridges. The damaged model indicates a significant decrease in moment in the damaged beams and a redistribution of load to the adjacent curb and rail as well as to the undamaged beam lines.
Resumo:
A laboratory investigation was undertaken to determine the limiting model Reynolds number above which the scour behavior of rock protected structures can be reproduced in hydraulic models scaled according to the Froude criterion. A submerged jet was passed over an initially full scour pocket containing uniform glass spheres and the rate of scour was measured as a function of time. The dimensions of the scour pocket and jet and the particle diameters were varied as needed to maintain strict geometric similarity. For each of two different Froude numbers the Reynolds number was varied over a wide range. The normalized scour rate was found to be practically independent of the Reynolds number, R, (based on the jet velocity and particle diameter) at values of R above about 2.5 x 10^3, and to decrease with Rat smaller values. A grid placed in the jet was found to have a very strong effect on the scour rate. In an attempt to explain the effect of R on the scour behavior, turbulent pressure and velocity fluctuations were measured in air flows and water flows, respectively, over rigid scour pockets having the same geometry as those formed in the scour experiments. The normalized spectra of the fluctuations were found to be nearly independent of R, but the flow pattern was found to be very sensitive to the inlet condition, the jet deflecting upward or downward in a not wholly explainable manner. This indicates that scour behavior can be modeled only if the approach flow is also accurately modeled.
Resumo:
Addendum to HR-273
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.
Resumo:
For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.
Resumo:
The aim of the present study is to investigate the effect of low-permeability concrete, made with reduced water‐to‐binder ratios (w/b) and/or supplementary cementitious materials (SCMs), on the need for air entrainment to achieve freezing‐thawing (F‐T) durability. In the present study, concrete mixes were made with different types of cement (Types I and IP), with or without fly ash replacement (15%), with different water‐to‐binder ratios (w/b =0.25, 0.35, 0.45 and 0.55), and with or without air entraining agent (AEA). All concrete mixtures were controlled to have a similar slump by using different dosages of superplasticizer. The rapid chloride permeability and F-T durability of the concrete samples were determined according to ASTM C1202 and ASTM C666A, respectively. The air void structure of the concrete was studied using the Air Void Analyzer, RapidAir, and porosity tests (ASTM C642). In addition, the general concrete properties, such as slump, air content, unit weight, and 28‐day compressive strength, were evaluated. The results indicate that all concrete mixes with proper air entrainment (ASTM C231 air content ≥ 6%) showed good F‐T resistance (durability factor ≥85%). All concrete mixes without AEA showed poor F‐T resistance (durability factor < 40%), except for one mix that had very low permeability and high strength. This was the concrete made with Type IP cement and with a w/b of 0.25, which had a permeability of 520 coulombs and a compressive strength of 12,760 psi (88 MPa). There were clear relationships between the F‐T durability and hardened concrete properties of non–air entrained concrete. However, such relationships did not exist in concrete with AEA. For concrete with AEA, good F‐T durability was associated with an air void spacing factor ≤ 0.28 mm (by AVA) or ≤ 0.22 mm (by RapidAir).
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pinconnected high-truss single-lane bridge, was selected for a testing program which included ultimate load tests. The purpose of the ultimate load tests, which are summarized in this report, was to relate design and rating procedures presently used in bridge design to the field behavior of this type of truss bridge. The ultimate load tests consisted of ultimate load testing of one span of the bridge, of two I-shaped floorbeams, and of two panels of the timber deck. The theoretical capacity of each of these components is compared with the results from the field tests.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. Two of these were incorporated into a comprehensive test program to study the behavior of old pin-connected high-truss single-lane bridges. The test program consisted of ultimate load tests, service load tests and a supplementary test program. The results reported in this report cover the service load tests on the two bridges as well as the supplementary tests, both static and fatigue, of eyebar members removed from the two bridges. The field test results of the service loading are compared with theoretical results of the truss analysis.
Resumo:
In 1957, the Iowa State Highway Commission, with financial assistance from the aluminum industry, constructed a 220-ft (67-m) long, four-span continuous, aluminum girder bridge to carry traffic on Clive Road (86th Street) over Interstate 80 near Des Moines, Iowa. The bridge had four, welded I-shape girders that were fabricated in pairs with welded diaphragms between an exterior and an interior girder. The interior diaphragms between the girder pairs were bolted to girder brackets. A composite, reinforced concrete deck served as the roadway surface. The bridge, which had performed successfully for about 35 years of service, was removed in the fall of 1993 to make way for an interchange at the same location. Prior to the bridge demolition, load tests were conducted to monitor girder and diaphragm bending strains and deflections in the northern end span. Fatigue testing of the aluminum girders that were removed from the end spans were conducted by applying constant-amplitude, cyclic loads. These tests established the fatigue strength of an existing, welded, flange-splice detail and added, welded, flange-cover plates and horizontal web plate attachment details. This part, Part 2, of the final report focuses on the fatigue tests of the aluminum girder sections that were removed from the bridge and on the analysis of the experimental data to establish the fatigue strength of full-size specimens. Seventeen fatigue fractures that were classified as Category E weld details developed in the seven girder test specimens. Linear regression analyses of the fatigue test results established both nominal and experimental stress-range versus load cycle relationships (SN curves) for the fatigue strength of fillet-welded connections. The nominal strength SN curve obtained by this research essentially matched the SN curve for Category E aluminum weldments given in the AASHTO LRFD specifications. All of the Category E fatigue fractures that developed in the girder test specimens satisfied the allowable SN relationship specified by the fatigue provisions of the Aluminum Association. The lower-bound strength line that was set at two standard deviations below the least squares regression line through the fatigue fracture data points related well with the Aluminum Association SN curve. The results from the experimental tests of this research have provided additional information regarding behavioral characteristics of full-size, aluminum members and have confirmed that aluminum has the strength properties needed for highway bridge girders.