24 resultados para dot chromosome
Resumo:
The joint between two lanes of asphalt pavement is often the first area of a roadway which shows signs of deterioration and requires maintenance. As the final lift of hot asphalt is being placed in a construction project, it is being forced p against the adjoining lane of cold asphalt, forming the longitudinal joint. The mating of the two lanes, to form a high quality seal, is often not fully successful and later results in premature stripping or raveling as water enters the unsealed joint. The application of a hot poured rubberized asphaltic joint sealant along the joint face in the final stage of construction should help to form a watertight joint seal. A new product, especially formulated for the longitudinal joint in asphalt pavements was proposed to improve joint sealing. The following describes the experimental application of the new product, Crafco, PN 34524.
Resumo:
This report describes the continuation of the development of performance measures for the Iowa Department of Transportation (DOT) Offices of Construction. Those offices are responsible for administering transportation construction projects for the Iowa DOT. Researchers worked closely with the Benchmark Steering Team which was formed during Phase I of this project and is composed of representatives of the Offices of Construction. The research team conducted a second survey of Offices of Construction personnel, interviewed numerous members of the Offices and continued to work to improve the eight key processes identified during Phase I of this research. The eight key processes include Inspection of Work, Resolution of Technical Issues, Documentation of Work Progress and Pay Quantities, Employee Training and Development, Continuous Feedback for Improved Contract Documents, Provide Safe Traffic Control, External/Public Communication, and Providing Pre-Letting Information. Three to four measurements were specified for each key process. Many of these measurements required opinion surveys of employees, contractors, and others. During Phase II, researchers concentrated on conducting surveys, interviewing respondents to improve future surveys, and facilitating Benchmark Steering Team monthly meetings. Much effort was placed on using the information collected during the first year's research to improve the effectiveness and efficiency of the Offices of Construction. The results from Process Improvement Teams that studied Traffic Control and Resolution of Technical Issues were used to improve operations.
Resumo:
The purpose of this study is to provide recommendations relative to the location and construction needs for highway maintenance facilities within the state of Iowa. These recommendations were to be developed with consideration being given to the public's expectations and priorities for highway maintenance services. As a part of the study effort, a review was made of the methods used by other states to deliver highway maintenance services. To accomplish the study, Wilbur Smith Associates undertook a series of tasks. These efforts included gathering of data and information to characterize the various maintenance programs and the delivery of maintenance and operations services by the Department. We researched the delivery of highway maintenance services in other states. Interviews with Iowa DOT maintenance personnel were accomplished. A schedule of public hearings was developed and ten hearings were held. All the information was integrated and various analyses were made. From these analyses we drew conclusions and developed recommendations.
Resumo:
Assesses the impact of library services on research projects, proposes methods to improve the impact of library services on research projects, assesses current library technology systems and proposes upgrades, assesses current library collection infrastructure and propose upgrades, especially in regards to collection damage from water or fire; ascertains patron interest in mobile technologies and suggest development based on interest.
Resumo:
The report compares and contrasts the automated PASCO method of pavement evaluation to the manual procedures used by the Iowa Department of Transportation (DOT) to evaluate pavement condition. Iowa DOT's use of IJK and BPR roadmeters and manual crack and patch surveys are compared to PASCO's use of 35-mm photography, artificial lighting and hairline projection, tracking wheels and lasers to measure ride, cracking and patching, rut depths, and roughness. The Iowa DOT method provides a Present Serviceability Index (PSI) value and PASCO provides a Maintenance Control Index (MCI). Seven sections of Interstate Highway, county roads and city streets, and one shoulder section were tested with different speeds of data collection, surface types and textures, and stop and start conditions. High correlation of results between the two methods in the measurement of roughness (0.93 for the tracking wheel and 0.84 for the laser method) were recorded. Rut depth correlations of 0.61 and cracking of 0.32 are attributed to PASCO's more comprehensive measurement techniques. A cost analysis of the data provided by both systems indicates that PASCO is capable of providing a comparable result with improved accuracy at a cost of $125-$150 or less per two-lane mile depending on survey mileage. Improved data collection speed, accuracy, and reliability, and a visible record of pavement condition for comparable costs are available. The PASCO system's ability to provide the data required in the Highway Pavement Distress Identification Manual, the Pavement Condition Rating Guide, and the Strategic Highway Research Program Long Term Pavement Performance (LTPP) Studies, is also outlined in the report.
Resumo:
Currently, individuals including designers, contractors, and owners learn about the project requirements by studying a combination of paper and electronic copies of the construction documents including the drawings, specifications (standard and supplemental), road and bridge standard drawings, design criteria, contracts, addenda, and change orders. This can be a tedious process since one needs to go back and forth between the various documents (paper or electronic) to obtain information about the entire project. Object-oriented computer-aided design (OO-CAD) is an innovative technology that can bring a change to this process by graphical portrayal of information. OO-CAD allows users to point and click on portions of an object-oriented drawing that are then linked to relevant databases of information (e.g., specifications, procurement status, and shop drawings). The vision of this study is to turn paper-based design standards and construction specifications into an object-oriented design and specification (OODAS) system or a visual electronic reference library (ERL). Individuals can use the system through a handheld wireless book-size laptop that includes all of the necessary software for operating in a 3D environment. All parties involved in transportation projects can access all of the standards and requirements simultaneously using a 3D graphical interface. By using this system, users will have all of the design elements and all of the specifications readily available without concerns of omissions. A prototype object-oriented model was created and demonstrated to potential users representing counties, cities, and the state. Findings suggest that a system like this could improve productivity to find information by as much as 75% and provide a greater sense of confidence that all relevant information had been identified. It was also apparent that this system would be used by more people in construction than in design. There was also concern related to the cost to develop and maintain the complete system. The future direction should focus on a project-based system that can help the contractors and DOT inspectors find information (e.g., road standards, specifications, instructional memorandums) more rapidly as it pertains to a specific project.
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
The objective of the Phase 3 project was to re-write the identified sections of the SUDAS specifications into the imperative mood, consistent with the format utilized during the Phase 2 project and other work completed by SUDAS staff. Figures for the identified sections were updated to match the new SUDAS format, similar to the Iowa DOT Standard Road Plans. While the Iowa DOT does not intend to incorporate all of the following sections into their specification book, consistency with the Iowa DOT specifications was strived for wherever possible. Maintaining consistency between the specifications simplifies design, bidding, and construction.