3 resultados para irradiation field
Resumo:
BACKGROUND In cervical postoperative radiotherapy, the target volume is usually the same as the extension of the previous dissection. We evaluated a protocol of selective irradiation according to the risk estimated for each dissected lymph node level. METHODS Eighty patients with oral/oropharyngeal cancer were included in this prospective clinical study between 2005 and 2008. Patients underwent surgery of the primary tumor and cervical dissection, with identification of positive nodal levels, followed by selective postoperative radiotherapy. Three types of selective nodal clinical target volume (CTV) were defined: CTV0, CTV1, and CTV2, with a subclinical disease risk of <10%, 10-25%, and 25% and a prescribed radiation dose of <35 Gy, 50 Gy, and 66-70 Gy, respectively. The localization of node failure was categorized as field, marginal, or outside the irradiated field. RESULTS A consistent pattern of cervical infiltration was observed in 97% of positive dissections. Lymph node failure occurred within a high-risk irradiated area (CTV1-CTV2) in 12 patients, marginal area (CTV1/CTVO) in 1 patient, and non-irradiated low-risk area (CTV0) in 2 patients. The volume of selective lymph node irradiation was below the standard radiation volume in 33 patients (mean of 118.6 cc per patient). This decrease in irradiated volume was associated with greater treatment compliance and reduced secondary toxicity. The three-year actuarial nodal control rate was 80%. CONCLUSION This selective postoperative neck irradiation protocol was associated with a similar failure pattern to that observed after standard neck irradiation and achieved a significant reduction in target volume and secondary toxicity.
Resumo:
One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.