30 resultados para Psoriatic-arthritis
Resumo:
Biological therapies have been a major advance in RA treatment. However, remission or response is not achieved in all patients. Therefore, new drugs seem necessary. Most recent trials have focused in the development of three different groups of molecules: those against commercialized targets but minimizing side effects or improving administration, others molecules against new targets, and a third group including small molecules. Some of them have been shown to be clinically efficacious and safe in RA patients, including: two new anti-TNF therapies (golimumab and certolizumab pegol), three anti-CD (ocrelizumab, ofatumumab and a SMIP), subcutaneous abatacept, anti-IL17 therapy, tasocitinib and fostamatinib disodium. Therefore, a wide spectrum of new RA therapeutics are promising, but more studies are necessary to confirm these results.
Resumo:
INTRODUCTION The purpose of this study was to investigate the association between HLA-DRB1 alleles with susceptibility to rheumatoid arthritis (RA) and production of antibodies against citrullinated proteins (ACPA) and rheumatoid factor (RF). METHODS We studied 408 patients (235 with RA, 173 non-RA) and 269 controls. ACPA, RF and HLA-DR typing were determined. RESULTS We found an increased frequency of HLA DRB1 alleles with the shared epitope (SE) in ACPA-positive RA. Inversely, HLA DRB1 alleles encoding DERAA sequences were more frequent in controls than in ACPA-positive RA, and a similar trend was found for HLA DR3. However, these results could not be confirmed after stratification for the presence of the SE, probably due to the relatively low number of patients. These data may suggest that the presence of these alleles may confer a protective role for ACPA-positive RA. In RA patients we observed association between SE alleles and ACPA titers in a dose-dependent effect. The presence of HLA DR3 or DERAA-encoding alleles was associated with markedly reduced ACPA levels. No association between RF titers and HLA DR3 or DERAA-encoding alleles was found. CONCLUSIONS HLA DRB1 alleles with the SE are associated with production of ACPA. DERAA-encoding HLA-DR alleles and HLA DR3 may be protective for ACPA-positive RA.
Resumo:
INTRODUCTION Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region. METHODS To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry. RESULTS Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region. CONCLUSIONS Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.
Resumo:
INTRODUCTION No definitive data are available regarding the value of switching to an alternative TNF antagonist in rheumatoid arthritis patients who fail to respond to the first one. The aim of this study was to evaluate treatment response in a clinical setting based on HAQ improvement and EULAR response criteria in RA patients who were switched to a second or a third TNF antagonist due to failure with the first one. METHODS This was an observational, prospective study of a cohort of 417 RA patients treated with TNF antagonists in three university hospitals in Spain between January 1999 and December 2005. A database was created at the participating centres, with well-defined operational instructions. The main outcome variables were analyzed using parametric or non-parametric tests depending on the level of measurement and distribution of each variable. RESULTS Mean (+/- SD) DAS-28 on starting the first, second and third TNF antagonist was 5.9 (+/- 2.0), 5.1 (+/- 1.5) and 6.1 (+/- 1.1). At the end of follow-up, it decreased to 3.3 (+/- 1.6; Delta = -2.6; p > 0.0001), 4.2 (+/- 1.5; Delta = -1.1; p = 0.0001) and 5.4 (+/- 1.7; Delta = -0.7; p = 0.06). For the first TNF antagonist, DAS-28-based EULAR response level was good in 42% and moderate in 33% of patients. The second TNF antagonist yielded a good response in 20% and no response in 53% of patients, while the third one yielded a good response in 28% and no response in 72%. Mean baseline HAQ on starting the first, second and third TNF antagonist was 1.61, 1.52 and 1.87, respectively. At the end of follow-up, it decreased to 1.12 (Delta = -0.49; p < 0.0001), 1.31 (Delta = -0.21, p = 0.004) and 1.75 (Delta = -0.12; p = 0.1), respectively. Sixty four percent of patients had a clinically important improvement in HAQ (defined as > or = -0.22) with the first TNF antagonist and 46% with the second. CONCLUSION A clinically significant effect size was seen in less than half of RA patients cycling to a second TNF antagonist.
Resumo:
The present study was conducted to explore whether single nucleotide polymorphisms (SNPs) in Th1 and Th17 cell-mediated immune response genes differentially influence the risk of rheumatoid arthritis (RA) in women and men. In phase one, 27 functional/tagging polymorphisms in C-type lectins and MCP-1/CCR2 axis were genotyped in 458 RA patients and 512 controls. Carriers of Dectin-2 rs4264222T allele had an increased risk of RA (OR = 1.47, 95%CI 1.10-1.96) whereas patients harboring the DC-SIGN rs4804803G, MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of developing the disease (OR = 0.66, 95%CI 0.49-0.88; OR = 0.66, 95%CI 0.50-0.89; OR = 0.73, 95%CI 0.55-0.97 and OR = 0.68, 95%CI 0.51-0.91). Interestingly, significant gender-specific differences were observed for Dectin-2 rs4264222 and Dectin-2 rs7134303: women carrying the Dectin-2 rs4264222T and Dectin-2 rs7134303G alleles had an increased risk of RA (OR = 1.93, 95%CI 1.34-2.79 and OR = 1.90, 95%CI 1.29-2.80). Also five other SNPs showed significant associations only with one gender: women carrying the MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of RA (OR = 0.61, 95%CI 0.43-0.87; OR = 0.67, 95%CI 0.47-0.95 and OR = 0.60, 95%CI 0.42-0.86). In men, carriers of the DC-SIGN rs2287886A allele had an increased risk of RA (OR = 1.70, 95%CI 1.03-2.78), whereas carriers of the DC-SIGN rs4804803G had a decreased risk of developing the disease (OR = 0.53, 95%CI 0.32-0.89). In phase 2, we genotyped these SNPs in 754 RA patients and 519 controls, leading to consistent gender-specific associations for Dectin-2 rs4264222, MCP-1 rs1024611, MCP-1 rs13900 and DC-SIGN rs4804803 polymorphisms in the pooled sample (OR = 1.38, 95%CI 1.08-1.77; OR = 0.74, 95%CI 0.58-0.94; OR = 0.76, 95%CI 0.59-0.97 and OR = 0.56, 95%CI 0.34-0.93). SNP-SNP interaction analysis of significant SNPs also showed a significant two-locus interaction model in women that was not seen in men. This model consisted of Dectin-2 rs4264222 and Dectin-2 rs7134303 SNPs and suggested a synergistic effect between the variants. These findings suggest that Dectin-2, MCP-1 and DC-SIGN polymorphisms may, at least in part, account for gender-associated differences in susceptibility to RA.
Resumo:
BACKGROUND The number of copies of the HLA-DRB1 shared epitope, and the minor alleles of the STAT4 rs7574865 and the PTPN22 rs2476601 polymorphisms have all been linked with an increased risk of developing rheumatoid arthritis. In the present study, we investigated the effects of these genetic variants on disease activity and disability in patients with early arthritis. METHODOLOGY AND RESULTS We studied 640 patients with early arthritis (76% women; median age, 52 years), recording disease-related variables every 6 months during a 2-year follow-up. HLA-DRB1 alleles were determined by PCR-SSO, while rs7574865 and rs2476601 were genotyped with the Taqman 5' allelic discrimination assay. Multivariate analysis was performed using generalized estimating equations for repeated measures. After adjusting for confounding variables such as gender, age and ACPA, the TT genotype of rs7574865 in STAT4 was associated with increased disease activity (DAS28) as compared with the GG genotype (β coefficient [95% confidence interval] = 0.42 [0.01-0.83], p = 0.044). Conversely, the presence of the T allele of rs2476601 in PTPN22 was associated with diminished disease activity during follow-up in a dose-dependent manner (CT genotype = -0.27 [-0.56- -0.01], p = 0.042; TT genotype = -0.68 [-1.64- -0.27], p = 0.162). After adjustment for gender, age and disease activity, homozygosity for the T allele of rs7574865 in STAT4 was associated with greater disability as compared with the GG genotype. CONCLUSIONS Our data suggest that patients with early arthritis who are homozygous for the T allele of rs7574865 in STAT4 may develop a more severe form of the disease with increased disease activity and disability.
Resumo:
BACKGROUND Persistence of anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis (RA) is an overall marker of treatment success. OBJECTIVE To assess the survival of anti-TNF treatment and to define the potential predictors of drug discontinuation in RA, in order to verify the adequacy of current practices. DESIGN An observational, descriptive, longitudinal, retrospective study. SETTING The Hospital Clínico Universitario de Valladolid, Valladolid, Spain. PATIENTS RA patients treated with anti-TNF therapy between January 2011 and January 2012. MEASUREMENTS Demographic information and therapy assessments were gathered from medical and pharmaceutical records. Data is expressed as means (standard deviations) for quantitative variables and frequency distribution for qualitative variables. Kaplan-Meier survival analysis was used to assess persistence, and Cox multivariate regression models were used to assess potential predictors of treatment discontinuation. RESULTS In total, 126 treatment series with infliximab (n = 53), etanercept (n = 51) or adalimumab (n = 22) were administered to 91 patients. Infliximab has mostly been used as a first-line treatment, but it was the drug with the shortest time until a change of treatment. Significant predictors of drug survival were: age; the anti-TNF agent; and the previous response to an anti-TNF drug. LIMITATION The small sample size. CONCLUSION The overall efficacy of anti-TNF drugs diminishes with time, with infliximab having the shortest time until a change of treatment. The management of biologic therapy in patients with RA should be reconsidered in order to achieve disease control with a reduction in costs.
Resumo:
Background. Collagen-induced arthritis (CIA), a murine experimental disease model induced by immunization with type II collagen (CII), is used to evaluate novel therapeutic strategies for rheumatoid arthritis. Adult stem cell marker Musashi-1 (Msi1) plays an important role in regulating the maintenance and differentiation of stem/precursor cells. The objectives of this investigation were to perform a morphological study of the experimental CIA model, evaluate the effect of TNFα-blocker (etanercept) treatment, and determine the immunohistochemical expression of Msi1 protein. Methods. CIA was induced in 50 male DBA1/J mice for analyses of tissue and serum cytokine; clinical and morphological lesions in limbs; and immunohistochemical expression of Msi1. Results. Clinically, TNFα-blocker treatment attenuated CIA on day 32 after immunization (P < 0.001). Msi1 protein expression was significantly higher in joints damaged by CIA than in those with no lesions (P < 0.0001) and was related to the severity of the lesions (Spearman's rho = 0.775, P = 0.0001). Conclusions. Treatment with etanercept attenuates osteoarticular lesions in the murine CIA model. Osteoarticular expression of Msi1 protein is increased in joints with CIA-induced lesion and absent in nonlesioned joints, suggesting that this protein is expressed when the lesion is produced in order to favor tissue repair.
Resumo:
BACKGROUND The aim of our work was to replicate, in a Southern European population, the association reported in Northern populations between PTPRC locus and response to anti-tumor necrosis factor (anti-TNF) treatment in rheumatoid arthritis (RA). We also looked at associations between five RA risk alleles and treatment response. METHODS We evaluated associations between anti-TNF treatment responses assessed by DAS28 change and by EULAR response at six months in 383 Portuguese patients. Univariate and multivariate linear and logistic regression analyses were performed. In a second step to confirm our findings, we pooled our population with 265 Spanish patients. RESULTS No association was found between PTPRC rs10919563 allele and anti-TNF treatment response, neither in Portuguese modeling for several clinical variables nor in the overall population combining Portuguese and Spanish patients. The minor allele for RA susceptibility, rs3761847 SNP in TRAF1/C5 region, was associated with a poor response in linear and logistic univariate and multivariate regression analyses. No association was observed with the other allellic variants. Results were confirmed in the pooled analysis. CONCLUSION This study did not replicate the association between PTPRC and the response to anti-TNF treatment in our Southern European population. We found that TRAF1/C5 risk RA variants potentially influence anti-TNF treatment response.
Resumo:
INTRODUCTION We have hypothesized that incompatibility between the G1m genotype of the patient and the G1m1 and G1m17 allotypes carried by infliximab (INX) and adalimumab (ADM) could decrease the efficacy of these anti-tumor necrosis factor (anti-TNF) antibodies in the treatment of rheumatoid arthritis (RA). METHODS The G1m genotypes were analyzed in three collections of patients with RA totaling 1037 subjects. The first, used for discovery, comprised 215 Spanish patients. The second and third were successively used for replication. They included 429 British and Greek patients and 393 Spanish and British patients, respectively. Two outcomes were considered: change in the Disease Activity Score in 28 joint (ΔDAS28) and the European League Against Rheumatism (EULAR) response criteria. RESULTS An association between less response to INX and incompatibility of the G1m1,17 allotype was found in the discovery collection at 6 months of treatment (P = 0.03). This association was confirmed in the replications (P = 0.02 and 0.08, respectively) leading to a global association (P = 0.001) that involved a mean difference in ΔDAS28 of 0.4 units between compatible and incompatible patients (2.3 ± 1.5 in compatible patients vs. 1.9 ± 1.5 in incompatible patients) and an increase in responders and decrease in non-responders according to the EULAR criteria (P = 0.03). A similar association was suggested for patients treated with ADM in the discovery collection, but it was not supported by replication. CONCLUSIONS Our results suggest that G1m1,17 allotypes are associated with response to INX and could aid improved therapeutic targeting in RA.
Resumo:
Introduction. Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia. Methods. We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells. Results. We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy. Conclusions. These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.
Resumo:
INTRODUCTION: The objective was to investigate the potential implication of the IL18 gene promoter polymorphisms in the susceptibility to giant-cell arteritis GCA). METHODS: In total, 212 patients diagnosed with biopsy-proven GCA were included in this study. DNA from patients and matched controls was obtained from peripheral blood. Samples were genotyped for the IL18-137 G>C (rs187238), the IL18-607 C>A (rs1946518), and the IL18-1297 T>C (rs360719) gene polymorphisms with polymerase chain reaction, by using a predesigned TaqMan allele discrimination assay. RESULTS: No significant association between the IL18-137 G>C polymorphism and GCA was found. However, the IL18 -607 allele A was significantly increased in GCA patients compared with controls (47.8% versus 40.9% in patients and controls respectively; P = 0.02; OR, 1.32; 95% CI, 1.04 to 1.69). It was due to an increased frequency of homozygosity for the IL18 -607 A/A genotype in patients with GCA (20.4%) compared with controls (13.4%) (IL18 -607 A/A versus IL18 -607 A/C plus IL18 -607 C/C genotypes: P = 0.04; OR, 1.59; 95% CI, 1.02 to 2.46). Also, the IL18-1297 allele C was significantly increased in GCA patients (30.7%) compared with controls (23.0%) (P = 0.003; OR, 1.48; 95% CI, 1.13 to 1.95). In this regard, an increased susceptibility to GCA was observed in individuals carrying the IL18-1297 C/C or the IL18-1297 C/T genotypes compared with those carrying the IL18-1297 T/T genotype (IL18-1297 C/C plus IL18-1297 T/C versus IL18-1297 T/T genotype in GCA patients compared with controls: P = 0.005; OR, 1.61; 95% CI, 1.15 to 2.25). We also found an additive effect of the IL18 -1297 and -607 polymorphisms with TLR4 Asp299Gly polymorphism. The OR for GCA was 1.95 for combinations of genotypes with one or two risk alleles, whereas carriers of three or more risk alleles have an OR of 3.7. CONCLUSIONS: Our results show for the first time an implication of IL18 gene-promoter polymorphisms in the susceptibility to biopsy-proven GCA. In addition, an additive effect between the associated IL18 and TLR4 genetic variants was observed.
Resumo:
Background: A functional polymorphism located at 21 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves’ disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves’ disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn’s disease (CD) lesions. Methodology: Genotyping of rs1883832C.T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings: The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p= 0.025; OR (95% CI)= 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p= 0.002; OR (95% CI)= 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p= 0.5; OR (95% CI)= 1.04 (0.93–1.17)]. Conclusion: The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions
Resumo:
BACKGROUND. Autoimmunity appears to be associated with the pathophysiology of Meniere's disease (MD), an inner ear disorder characterized by episodes of vertigo associated with hearing loss and tinnitus. However, the prevalence of autoimmune diseases (AD) in patients with MD has not been studied in individuals with uni or bilateral sensorineural hearing loss (SNHL). METHODS AND FINDINGS. We estimated the prevalence of AD in 690 outpatients with MD with uni or bilateral SNHL from otoneurology clinics at six tertiary referral hospitals by using clinica criteria and an immune panel (lymphocyte populations, antinuclear antibodies, C3, C4 and proinflammatory cytokines TNFα, INFγ). The observed prevalence of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and ankylosing spondylitis (AS) was higher than expected for the general population (1.39 for RA, 0.87 for SLE and 0.70 for AS, respectively). Systemic AD were more frequently observed in patients with MD and diagnostic criteria for migraine than cases with MD and tension-type headache (p = 0.007). There were clinical differences between patients with uni or bilateral SNHL, but no differences were found in the immune profile. Multiple linear regression showed that changes in lymphocytes subpopulations were associated with hearing loss and persistence of vertigo, suggesting a role for the immune response in MD. CONCLUSIONS. Despite some limitations, MD displays an elevated prevalence of systemic AD such as RA, SLE and AS. This finding, which suggests an autoimmune background in a subset of patients with MD, has important implications for the treatment of MD.
Resumo:
Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.