16 resultados para OXIDATIVE DAMAGE
Resumo:
In recent years it has been shown that emotional stress induced by immobilization may change the balance between pro-oxidant and antioxidant factors inducing oxidative damage. On the other hand, contradictory views exist concerning the role of physical activity on redox metabolism. Consequently, the present work was designed to assess the influence of an 8-week moderate swimming training program in emotionally stressed rats. Sixty 1-month-old male albino Wistar rats weighing 125-135 g were used in this experimental study. They were divided into three groups, as Control (lot A; n=20), Stressed (lot B; n=20) and Stressed & Exercised (lot C; n=20). Rats were stressed by placing the animals in a 25 x 7 cm plastic bottle 1 h/day, 5 days a week for 8 weeks. Protein carbonyl content values in liver homogenates were significantly increased in stressed animals (0.58+/-0.02 vs 0.86+/-0.03; p=0.018) which clearly indicated that emotional stress was associated with oxidative stress. Ultrastructural alterations, predominantly mitochondrial swelling and the decrease of cristae number observed by electron microscopy represented direct evidence of membrane injury. The most striking feature of our study was that we also found differences between stressed rats and stressed rats that performed our 8 week training program. Consequently our results highlight the potential benefit of a moderate training program to reduce oxidative damage induced by emotional stress since it attenuated protein oxidation and mitochondrial alterations.
Resumo:
INTRODUCTION In the critically ill patient, there is a continuous production of reactive oxygen species (ROS) that need to be neutralized to prevent oxidative stress (OS). Quantitatively speaking, the glutathione system (GSH) is the most important anti-oxidant endogenous defense. To increase it, glutamine supplementation has been shown to be effective by protecting against the oxidative damage and reducing the morbimortality. OBJECTIVE To assess the effect of adding an alanylglutamine dipeptide to PN on lipid peroxidation lipidica and glutathione metabolism, as well as its relationship with morbidity in critically ill patients. METHODS Determination through spectrophotometry techniques of glutathione peroxidase, glutathione reductase, total glutathione, and maloniladdehyde at admission adn after seven days of hospitalization at the Intensive Care Unit (ICU) in 20 patients older than 18 years on parenteral nutrition therapy. RESULTS The group of patients receiving parenteral nutrition with glutamine supplementation had significant increases in total glutathione (42.35+/-13 vs 55.29+/-12 micromol/l; p<0.05) and the enzymatic activity of glutathione peroxidasa (470+/-195 vs 705+/-214 micromol/l; p<0.05) within one week of nutritional therapy, whereas the group on conventional parenteral nutrition did not show significant changes of any of the parameters studied (p>0.05). However, both mortality and ICU stay were not different between the study group, whereas the severity (assessed by the SOFA score) was lower in the group of patients receiving glutamine (SOFA 5+/-2 vs 8+/-1.8; p<0.05). CONCLUSIONS Glutamine intake in critically ill patients improves the antioxidant defenses, which leads to lower lipid peroxidation and lower morbidity during admission at the ICU.
Resumo:
INTRODUCTION Selenium is an essential micronutrient for human health, being a cofactor for enzymes with antioxidant activity that protect the organism from oxidative damage. An inadequate intake of this mineral has been associated with the onset and progression of chronic diseases such as hypertension, diabetes, coronary diseases, asthma, and cancer. For this reason, knowledge of the plasma and erythrocyte selenium levels of a population makes a relevant contribution to assessment of its nutritional status. OBJECTIVE The objective of the present study was to determine the nutritional status of selenium and risk of selenium deficiency in a healthy adult population in Spain by examining food and nutrient intake and analyzing biochemical parameters related to selenium metabolism, including plasma and erythrocyte levels and selenium-dependent glutathione peroxidase (GPx) enzymatic activity. MATERIAL AND METHODS We studied 84 healthy adults (31 males and 53 females) from the province of Granada, determining their plasma and erythrocyte selenium concentrations and the association of these levels with the enzymatic activity of glutathione peroxidase (GPx) and with life style factors. We also gathered data on their food and nutrient intake and the results of biochemical analyses. Correlations were studied among all of these variables. RESULTS The mean plasma selenium concentration was 76.6 ± 17.3 μg/L (87.3 ± 17.4 μg/L in males, 67.3 ± 10.7 μg/L in females), whereas the mean erythrocyte selenium concentration was 104.6 μg/L (107.9 ± 26.1 μg/L in males and 101.7 ± 21.7 μg/L in females). The nutritional status of selenium was defined by the plasma concentration required to reach maximum GPx activity, establishing 90 μg/L as reference value. According to this criterion, 50% of the men and 53% of the women were selenium deficient. CONCLUSIONS Selenium is subjected to multiple regulation mechanisms. Erythrocyte selenium is a good marker of longer term selenium status, while plasma selenium appears to be a marker of short-term nutritional status. The present findings indicate a positive correlation between plasma selenium concentration and the practice of physical activity. Bioavailability studies are required to establish appropriate reference levels of this mineral for the Spanish population.
Resumo:
In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.
Resumo:
Inflammatory processes described in Parkinson’s disease (PD) and its animal models appear to be important in the progression of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide. In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation. Data are reviewed in relation to epidemiological studies of PD.
Resumo:
Background. DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.
Resumo:
Introduction. Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods. Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results. Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion. The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of antioxidant vitamins below 66% of RDA and alteration in endogenous levels of substances with antioxidant capacity are related to redox imbalance in critical ill patients. Therefore, intake of antioxidant vitamins should be carefully monitored so that it is as close as possible to RDA.
Resumo:
INTRODUCTION Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. METHODS Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. RESULTS Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. CONCLUSION After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients.
Resumo:
BACKGROUND. Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. METHODS. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. RESULTS. Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. CONCLUSIONS. A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
BACKGROUND AND AIMS Several studies have reported that a significant number of HIV patients not co-infected with HCV/HBV develop liver damage of uncertain origin (LDUO). The objective of our study was to evaluate the incidence of and risk factors for the development of LDUO in HIV infected patients not co-infected with HCV/HBV. METHODS Prospective longitudinal study that included HIV-infected patients free of previous liver damage and viral hepatitis B or C co-infections. Patients were followed up at 6-monthly intervals. Liver stiffness was measured at each visit. Abnormal liver stiffness (ALS) was defined as a liver stiffness value greater than 7.2 kPa at two consecutive measurements. For patients who developed ALS, a protocol was followed to diagnose the cause of liver damage. Those patients who could not be diagnosed with any specific cause of liver disease were diagnosed as LDUO and liver biopsy was proposed. RESULTS 210 patients matched the inclusion criteria and were included. 198 patients completed the study. After a median (Q1-Q3) follow-up of 18 (IQR 12-26) months, 21 patients (10.6%) developed ALS. Of these, fifteen patients were diagnosed as LDUO. The incidence of LDUO was 7.64 cases/100 patient-years. Histological studies were performed on ten (66.6%) patients and all showed liver steatosis. A higher HOMA-IR value and body mass index were independently associated with the development of LDUO. CONCLUSION We found a high incidence of LDUO in HIV-infected patients associated with metabolic risk factors. The leading cause of LDUO in our study was non-alcoholic fatty liver disease.
Resumo:
Malnutrition affects 40-50% of patients with ear, nose and throat (ENT) cancer. The aim of this study was to assess changes induced by a specific nutritional supplement enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes, as compared with a standard nutritional supplement, on markers of inflammation, oxidative stress and metabolic status of ENT cancer patients undergoing radiotherapy (RT). Fourteen days after starting RT, 26 patients were randomly allocated to one of two groups, 13 supplemented with Prosure, an oncologic formula enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes (specific supplement), and 13 supplemented with Standard-Isosource (standard supplement). Patients were evaluated before RT, and 14, 28 and 90 days after starting RT. The results showed that there were no significant differences between the groups, but greater changes were observed in the standard supplement group, such as a decline in body mass index (BMI), reductions in hematocrit, erythrocyte, eosinophil and albumin levels, and a rise in creatinine and urea levels. We concluded that metabolic, inflammatory and oxidative stress parameters were altered during RT, and began to normalize at the end of the study. Patients supplemented with Prosure showed an earlier normalization of these parameters, with more favorable changes in oxidative stress markers and a more balanced evolution, although the difference was not significant.
Resumo:
INTRODUCTION Chronic low-grade inflammation and immune activation may persist in HIV patients despite effective antiretroviral therapy (ART). These abnormalities are associated with increased oxidative stress (OS). Bilirubin (BR) may have a beneficial role in counteracting OS. Atazanavir (ATV) inhibits UGT1A1, thus increasing unconjugated BR levels, a distinctive feature of this drug. We compared changes in OS markers in HIV patients on ATV/r versus efavirenz (EFV)-based first-line therapies. MATERIALS AND METHODS Cohort of the Spanish Research Network (CoRIS) is a multicentre, open, prospective cohort of HIV-infected patients naïve to ART at entry and linked to a biobank. We identified hepatitis C virus/hepatitis B virus (HCV/HBV) negative patients who started first-line ART with either ATV/r or EFV, had a baseline biobank sample and a follow-up sample after at least nine months of ART while maintaining initial regimen and being virologically suppressed. Lipoprotein-associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO) and Oxidized LDL (OxLDL) were measured in paired samples. Marker values at one year were interpolated from available data. Multiple imputations using chained equations were used to deal with missing values. Change in the OS markers was modelled using multiple linear regressions adjusting for baseline marker values and baseline confounders. Correlations between continuous variables were explored using Pearson's correlation tests. RESULTS 145 patients (97 EFV; 48 ATV/r) were studied. Mean (SD) baseline values for OS markers in EFV and ATV/r groups were: Lp-PLA2 [142.2 (72.8) and 150.1 (92.8) ng/mL], MPO [74.3 (48.2) and 93.9 (64.3) µg/L] and OxLDL [76.3 (52.3) and 82.2 (54.4) µg/L]. After adjustment for baseline variables patients on ATV/r had a significant decrease in Lp-PLA2 (estimated difference -16.3 [CI 95%: -31.4, -1.25; p=0.03]) and a significantly lower increase in OxLDL (estimated difference -21.8 [-38.0, -5.6; p<0.01] relative to those on EFV, whereas no differences in MPO were found. Adjusted changes in BR were significantly higher for the ATV/r group (estimated difference 1.33 [1.03, 1.52; p<0.01]). Changes in BR and changes in OS markers were significantly correlated. CONCLUSIONS In virologically suppressed patients on stable ART, OS was lower in ATV/r-based regimens compared to EFV. We hypothesize these changes could be in part attributable to increased BR plasma levels.
Resumo:
Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.
Resumo:
The electrophoresis of cells in alkaline medium (comet assay) is a valid technique for quantifying DNA damage in patients with ataxia-telangiectasia and their relatives.