83 resultados para Gram-negative bacteria.
Resumo:
Several antimicrobial agents are being investigated as alternatives to carbapenems in the treatment of infections caused by ESBL-producing Enterobacteriaceae, which may be useful in avoiding overuse of carbapenems in the context of recent global spread of carbapenem-resistant Enterobacteriaceae. The most promising candidates for invasive infections so far are β-lactam/β-lactamase inhibitor combinations and cephamycins.
Resumo:
The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.
Resumo:
The influence of qnrA1 on the development of quinolone resistance in Enterobacteriaceae was evaluated by using the mutant prevention concentration parameter. The expression of qnrA1 considerably increased the mutant prevention concentration compared to strains without this gene. In the presence of qnrA1, mutations in gyrA and parC genes were easily selected to produce high levels of quinolone resistance.
Resumo:
The agar dilution, broth microdilution, and disk diffusion methods were compared to determine the in vitro susceptibility of 428 extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin. Fosfomycin showed very high activity against all ESBL-producing strains. Excellent agreement between the three susceptibility methods was found for E. coli, whereas marked discrepancies were observed for K. pneumoniae.
Resumo:
A ciprofloxacin-resistant Escherichia coli isolate, isolate 1B, was obtained from a urinary specimen of a Canadian patient treated with norfloxacin for infection due to a ciprofloxacin-susceptible isolate, isolate 1A. Both isolates harbored a plasmid-encoded sul1-type integron with qnrA1 and blaVEB-1 genes. Isolate 1B had amino acid substitutions in gyrase and topoisomerase.
Resumo:
The aim of this study was to search for plasmid-encoded quinolone resistance determinants QnrA and QnrS in fluoroquinolone-resistant and extended-spectrum beta-lactamase (ESBL)-producing enterobacterial isolates recovered in Sydney, Australia, in 2002. Twenty-three fluoroquinolone-resistant, of which 16 were also ESBL-positive, enterobacterial and nonrelated isolates were studied. PCR with primers specific for qnrA and qnrS genes and primers specific for a series of ESBL genes were used. A qnrA gene was identified in two ESBL-positive isolates, whereas no qnrS-positive strain was found. The QnrA1 determinant was identified in an Enterobacter cloacae isolate and in a carbapenem-resistant Klebsiella pneumoniae isolate, both of which expressed the same ESBL SHV- 12. Whereas no plasmid was identified in the E. cloacae isolate, K. pneumoniae K149 possessed two conjugative plasmids, one that harbored the qnrA and bla (SHV)-12 genes whereas the other expressed the carbapenemase gene bla (IMP-4). The qnrA gene, was located in both cases downstream of the orf513 recombinase gene and upstream of the qnrA1 gene, a structure identical to that found in sul1-type integron In36 and qnrA-positive strains from Shanghai, China. However, the gene cassettes of the sul1-type integrons were different. This study identified the first plasmid-mediated quinolone resistance determinant in Enterobacteriaceae in Australia.
Resumo:
We describe a case of bacteremia due to an as yet unclassified Acinetobacter genomic species 17-like strain. The recognition of this microorganism as non-Acinetobacter baumannii may have important epidemiological implications, as it relieves the hospital of the implementation of barrier precautions for patients infected or colonized as may be necessary with a multiresistant A. baumannii epidemic.
Resumo:
Extended-spectrum β-lactamases (ESBLs) form a heterogeneous group that share the property of hydrolytic activity against the oxyimino-β-lactams while remaining susceptible to inhibition by β-lactamase inhibitors, such as clavulanic acid. From a clinical point of view, they are important because they confer resistance to penicillins, aztreonam, and cephalosporins, and ESBL-producing organisms are typically also resistant to aminoglycosides, trimethoprim-sulfamethoxazole, and quinolones [1]. Until recently, the main problem posed by ESBLs was related to nosocomial outbreaks caused by ESBL-producing Klebsiella species. These outbreaks are usually clonal, the strains are mainly spread through cross-transmission, and the risk factors are similar to those found for other multidrug-resistant nosocomial pathogens [2]. In Europe and the United States, most ESBL-producing Klebsiella isolates harbored enzymes belonging to the TEM and SHV families [3]. Detection of colonized patients by performing surveillance cultures within affected units, isolation precautions for colonized patients, and restriction of oxyimino-β-lactam use are frequently useful for the control of these outbreaks [1]. There is no evidence that hospital-acquired ESBL-producing klebsiellae are decreasing in importance—in fact, data from the Centers for Disease Control and Prevention show that 20.6% of Klebsiella pneumoniae isolates from United States intensive care units in 2003 were probable producers of ESBL [4]. This represented a 47% increase, compared with the preceding 5 years. However, during the last few years, an impressive increase in the number of ESBL-producing Escherichia coli (and, less frequently, other Enterobacteriaceae) is being described in several parts of the world [5–8]. This emergent phenomenon shows some differences from the problem posed by Klebsiella species; many of these ESBL-producing E. coli are isolated …
Resumo:
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, particularly those producing CTX-M types of ESBL, are emerging pathogens. Bacteremia caused by these organisms represents a clinical challenge, because the organisms are frequently resistant to the antimicrobials recommended for treatment of patients with suspected E. coli sepsis. METHODS:A cohort study was performed that included all episodes of bloodstream infection due to ESBL-producing E. coli during the period from January 2001 through March 2005. Data on predisposing factors, clinical presentation, and outcome were collected. ESBLs were characterized using isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-three episodes (8.8% of cases of bacteremia due to E. coli) were included; 70% of the isolates produced a CTX-M type of ESBL. The most frequent origins of infection were the urinary (46%) and biliary tracts (21%). Acquisition was nosocomial in 21 cases (49%), health care associated in 14 cases (32%), and strictly community acquired in 8 cases (19%). Thirty-eight percent and 25% of patients had obstructive diseases of the urinary and biliary tracts, respectively, and 38% had recently received antimicrobials. Nine patients (21%) died. Compared with beta-lactam/beta-lactamase-inhibitor and carbapenem-based regimens, empirical therapy with cephalosporins or fluoroquinolones was associated with a higher mortality rate (9% vs. 35%; P=.05) and needed to be changed more frequently (24% vs. 78%; P=.001). CONCLUSIONS: ESBL-producing E. coli is a significant cause of bloodstream infection in hospitalized and nonhospitalized patients in the context of the emergence of CTX-M enzymes. Empirical treatment of sepsis potentially caused by E. coli may need to be reconsidered in areas where such ESBL-producing isolates are present.
Resumo:
BACKGROUND: Extended-spectrum beta-lactamase (ESBL)-producing members of the Enterobacteriaceae family are important nosocomial pathogens. Escherichia coli producing a specific family of ESBL (the CTX-M enzymes) are emerging worldwide. The epidemiology of these organisms as causes of nosocomial infection is poorly understood. The aims of this study were to investigate the clinical and molecular epidemiology of nosocomial infection or colonization due to ESBL-producing E. coli in hospitalized patients, consider the specific types of ESBLs produced, and identify the risk factors for infection and colonization with these organisms. METHODS: All patients with nosocomial colonization and/or infection due to ESBL-producing E. coli in 2 centers (a tertiary care hospital and a geriatric care center) identified between January 2001 and May 2002 were included. A double case-control study was performed. The clonal relatedness of the isolates was studied by repetitive extragenic palindromic-polymerase chain reaction and pulsed-field gel electrophoresis. ESBLs were characterized by isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-seven case patients were included. CTX-M-producing E. coli were clonally unrelated and more frequently susceptible to nonoxyimino-beta-lactams. Alternately, isolates producing SHV- and TEM-type ESBL were epidemic and multidrug resistant. Urinary catheterization was a risk factor for both CTX-M-producing and SHV-TEM-producing isolates. Previous oxyimino-beta-lactam use, diabetes, and ultimately fatal or nonfatal underlying diseases were independent risk factors for infection or colonization with CTX-M-producing isolates, whereas previous fluoroquinolone use was associated with infection or colonization with SHV-TEM-producing isolates. CONCLUSIONS: The epidemiology of ESBL-producing E. coli as a cause of nosocomial infection is complex. Sporadic CTX-M-producing isolates coexisted with epidemic multidrug-resistant SHV-TEM-producing isolates. These data should be taken into account for the design of control measures.
Resumo:
OBJECTIVE To describe what is, to our knowledge, the first nosocomial outbreak of infection with pan-drug-resistant (including colistin-resistant) Acinetobacter baumannii, to determine the risk factors associated with these types of infections, and to determine their clinical impact. DESIGN Nested case-control cohort study and a clinical-microbiological study. SETTING A 1,521-bed tertiary care university hospital in Seville, Spain. PATIENTS Case patients were inpatients who had a pan-drug-resistant A. baumannii isolate recovered from a clinical or surveillance sample obtained at least 48 hours after admission to an intensive care unit (ICU) during the time of the epidemic outbreak. Control patients were patients who were admitted to any of the "boxes" (ie, rooms that partition off a distinct area for a patient's bed and the equipment needed to care for the patient) of an ICU for at least 48 hours during the time of the epidemic outbreak. RESULTS All the clinical isolates had similar antibiotic susceptibility patterns (ie, they were resistant to all the antibiotics tested, including colistin), and, on the basis of repetitive extragenic palindromic-polymerase chain reaction, it was determined that all of them were of the same clone. The previous use of quinolones and glycopeptides and an ICU stay were associated with the acquisition of infection or colonization with pan-drug-resistant A. baumannii. To control this outbreak, we implemented the following multicomponent intervention program: the performance of environmental decontamination of the ICUs involved, an environmental survey, a revision of cleaning protocols, active surveillance for colonization with pan-drug-resistant A. baumannii, educational programs for the staff, and the display of posters that illustrate contact isolation measures and antimicrobial use recommendations. CONCLUSIONS We were not able to identify the common source for these cases of infection, but the adopted measures have proven to be effective at controlling the outbreak.
Resumo:
Background: Mortality from invasive meningococcal disease (IMD) has remained stable over the last thirty years and it is unclear whether pre-hospital antibiotherapy actually produces a decrease in this mortality. Our aim was to examine whether pre-hospital oral antibiotherapy reduces mortality from IMD, adjusting for indication bias. Methods: A retrospective analysis was made of clinical reports of all patients (n = 848) diagnosed with IMD from 1995 to 2000 in Andalusia and the Canary Islands, Spain, and of the relationship between the use of pre-hospital oral antibiotherapy and mortality. Indication bias was controlled for by the propensity score technique, and a multivariate analysis was performed to determine the probability of each patient receiving antibiotics, according to the symptoms identified before admission. Data on in-hospital death, use of antibiotics and demographic variables were collected. A logistic regression analysis was then carried out, using death as the dependent variable, and prehospital antibiotic use, age, time from onset of symptoms to parenteral antibiotics and the propensity score as independent variables. Results: Data were recorded on 848 patients, 49 (5.72%) of whom died. Of the total number of patients, 226 had received oral antibiotics before admission, mainly betalactams during the previous 48 hours. After adjusting the association between the use of antibiotics and death for age, time between onset of symptoms and in-hospital antibiotic treatment, pre-hospital oral antibiotherapy remained a significant protective factor (Odds Ratio for death 0.37, 95% confidence interval 0.15–0.93). Conclusion: Pre-hospital oral antibiotherapy appears to reduce IMD mortality.
Resumo:
Between March and May of 2011, a cluster of three fatal cases of meningococcal sepsis occurred in Andalusia, Spain, in a municipality with a population of around 20,000 inhabitants. The cases were in their mid-teens to early thirties and were notified to the epidemiological surveillance system of Andalusia (Sistema de Vigilancia Epidemiológica de Andalucía, SVEA) during a 68-day period from March through May 2011. All three were infected with the same strain of Neisseria meningitidis serogroup C genosubtype VR1:5-1;VR2:10-8. None of the cases had been previously vaccinated against N. meningitidis serogroup C. Antibiotic post-exposure chemoprophylaxis was administered to close contacts of every diagnosed case. Once the cluster was confirmed, the local population was informed through the media about the control measures taken by the health authorities. The vaccination history against N. meningitidis serogroup C of the population under 25 years-old in the municipality was checked. Vaccination was offered to unimmunised individuals younger than 25 years of age and an additional dose of vaccine was offered to those who had been vaccinated between 2000 and 2006 with a vaccination schedule of three doses before the first year of age. No further cases occurred since the beginning of these actions.
Resumo:
Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells.
Resumo:
Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp. are a major cause of infections in hospitalised patients. The aim of our study was to evaluate rates and trends of resistance to third-generation cephalosporins and fluoroquinolones in infected patients, the trends in use for these antimicrobials, and to assess the potential correlation between both trends. The database of national point prevalence study series of infections and antimicrobial use among patients hospitalised in Spain over the period from 1999 to 2010 was analysed. On average 265 hospitals and 60,000 patients were surveyed per year yielding a total of 19,801 E. coli, 3,004 K. pneumoniae and 3,205 Enterobacter isolates. During the twelve years period, we observed significant increases for the use of fluoroquinolones (5.8%-10.2%, p<0.001), but not for third-generation cephalosporins (6.4%-5.9%, p=NS). Resistance to third-generation cephalosporins increased significantly for E. coli (5%-15%, p<0.01) and for K. pneumoniae infections (4%-21%, p<0.01) but not for Enterobacter spp. (24%). Resistance to fluoroquinolones increased significantly for E. coli (16%30%, p<0.01), for K. pneumoniae (5%-22%, p<0.01), and for Enterobacter spp. (6%-15%, p<0.01). We found strong correlations between the rate of fluoroquinolone use and the resistance to fluoroquinolones, third-generation cephalosporins, or co-resistance to both, for E. coli (R=0.97, p<0.01, R=0.94, p<0.01, and R=0.96, p<0.01, respectively), and for K. pneumoniae (R=0.92, p<0.01, R=0.91, p<0.01, and R=0.92, p<0.01, respectively). No correlation could be found between the use of third-generation cephalosporins and resistance to any of the latter antimicrobials. No significant correlations could be found for Enterobacter spp.. Knowledge of the trends in antimicrobial resistance and use of antimicrobials in the hospitalised population at the national level can help to develop prevention strategies.