56 resultados para Fishing rods.
Resumo:
The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.
Resumo:
Necrotising pneumonia in young, previously healthy patients due to Panton–Valentine leucocidin (PVL) producing Staphylococcus aureus has been increasingly recognised. PVL pneumonia is often associated with influenza co-infection and high mortality. This case report describes the successful management of the first documented paediatric case of a previous healthy adolescent who developed necrotising pneumonia due to community-acquired methicillin-resistant (CA-MRSA) clone USA300 with pandemic influenza A (H1N1) co-infection, and highlights the importance of early recognition and initiation of appropriate therapy for this potentially fatal co-infection. PCR remains the gold standard to diagnose pandemic H1N1 since it may not be detected by rapid antigen tests. Bacterial necrotising pneumonia should be suspected in those presenting with worsening flu-like symptoms and clinical and/or radiological evidence of PVL infection (multifocal infiltrates, effusion and cavitation). These patients may benefit from the administration of toxin neutralising agents. In light of the current H1N1 pandemic, healthcare professionals will be increasingly confronted with this clinical scenario.
Resumo:
To evaluate the long-term impact of successive interventions on rates of methicillin-resistant Staphylococcus aureus (MRSA) colonization or infection and MRSA bacteremia in an endemic hospital-wide situation. DESIGN:Quasi-experimental, interrupted time-series analysis. The impact of the interventions was analyzed by use of segmented regression. Representative MRSA isolates were typed by use of pulsed-field gel electrophoresis. SETTING:A 950-bed teaching hospital in Seville, Spain. PATIENTS:All patients admitted to the hospital during the period from 1995 through 2008. METHODS:Three successive interventions were studied: (1) contact precautions, with no active surveillance for MRSA; (2) targeted active surveillance for MRSA in patients and healthcare workers in specific wards, prioritized according to clinical epidemiology data; and (3) targeted active surveillance for MRSA in patients admitted from other medical centers. RESULTS:Neither the preintervention rate of MRSA colonization or infection (0.56 cases per 1,000 patient-days [95% confidence interval {CI}, 0.49-0.62 cases per 1,000 patient-days]) nor the slope for the rate of MRSA colonization or infection changed significantly after the first intervention. The rate decreased significantly to 0.28 cases per 1,000 patient-days (95% CI, 0.17-0.40 cases per 1,000 patient-days) after the second intervention and to 0.07 cases per 1,000 patient-days (95% CI, 0.06-0.08 cases per 1,000 patient-days) after the third intervention, and the rate remained at a similar level for 8 years. The MRSA bacteremia rate decreased by 80%, whereas the rate of bacteremia due to methicillin-susceptible S. aureus did not change. Eighty-three percent of the MRSA isolates identified were clonally related. All MRSA isolates obtained from healthcare workers were clonally related to those recovered from patients who were in their care. CONCLUSION:Our data indicate that long-term control of endemic MRSA is feasible in tertiary care centers. The use of targeted active surveillance for MRSA in patients and healthcare workers in specific wards (identified by means of analysis of clinical epidemiology data) and the use of decolonization were key to the success of the program.
Resumo:
Objective. To study the acquisition and cross-transmission of Staphylococcus aureus in different intensive care units (ICUs). Methods. We performed a multicenter cohort study. Six ICUs in 6 countries participated. During a 3-month period at each ICU, all patients had nasal and perineal swab specimens obtained at ICU admission and during their stay. All S. aureus isolates that were collected were genotyped by spa typing and multilocus variable-number tandem-repeat analysis typing for cross-transmission analysis. A total of 629 patients were admitted to ICUs, and 224 of these patients were found to be colonized with S. aureus at least once during ICU stay (22% were found to be colonized with methicillin-resistant S. aureus [MRSA]). A total of 316 patients who had test results negative for S. aureus at ICU admission and had at least 1 follow-up swab sample obtained for culture were eligible for acquisition analysis. Results. A total of 45 patients acquired S. aureus during ICU stay (31 acquired methicillin-susceptible S. aureus [MSSA], and 14 acquired MRSA). Several factors that were believed to affect the rate of acquisition of S. aureus were analyzed in univariate and multivariate analyses, including the amount of hand disinfectant used, colonization pressure, number of beds per nurse, antibiotic use, length of stay, and ICU setting (private room versus open ICU treatment). Greater colonization pressure and a greater number of beds per nurse correlated with a higher rate of acquisition for both MSSA and MRSA. The type of ICU setting was related to MRSA acquisition only, and the amount of hand disinfectant used was related to MSSA acquisition only. In 18 (40%) of the cases of S. aureus acquisition, cross-transmission from another patient was possible. Conclusions. Colonization pressure, the number of beds per nurse, and the treatment of all patients in private rooms correlated with the number of S. aureus acquisitions on an ICU. The amount of hand disinfectant used was correlated with the number of cases of MSSA acquisition but not with the number of cases of MRSA acquisition. The number of cases of patient-to-patient cross-transmission was comparable for MSSA and MRSA.
Resumo:
The influence of qnrA1 on the development of quinolone resistance in Enterobacteriaceae was evaluated by using the mutant prevention concentration parameter. The expression of qnrA1 considerably increased the mutant prevention concentration compared to strains without this gene. In the presence of qnrA1, mutations in gyrA and parC genes were easily selected to produce high levels of quinolone resistance.
Resumo:
The agar dilution, broth microdilution, and disk diffusion methods were compared to determine the in vitro susceptibility of 428 extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin. Fosfomycin showed very high activity against all ESBL-producing strains. Excellent agreement between the three susceptibility methods was found for E. coli, whereas marked discrepancies were observed for K. pneumoniae.
Resumo:
A ciprofloxacin-resistant Escherichia coli isolate, isolate 1B, was obtained from a urinary specimen of a Canadian patient treated with norfloxacin for infection due to a ciprofloxacin-susceptible isolate, isolate 1A. Both isolates harbored a plasmid-encoded sul1-type integron with qnrA1 and blaVEB-1 genes. Isolate 1B had amino acid substitutions in gyrase and topoisomerase.
Resumo:
The aim of this study was to search for plasmid-encoded quinolone resistance determinants QnrA and QnrS in fluoroquinolone-resistant and extended-spectrum beta-lactamase (ESBL)-producing enterobacterial isolates recovered in Sydney, Australia, in 2002. Twenty-three fluoroquinolone-resistant, of which 16 were also ESBL-positive, enterobacterial and nonrelated isolates were studied. PCR with primers specific for qnrA and qnrS genes and primers specific for a series of ESBL genes were used. A qnrA gene was identified in two ESBL-positive isolates, whereas no qnrS-positive strain was found. The QnrA1 determinant was identified in an Enterobacter cloacae isolate and in a carbapenem-resistant Klebsiella pneumoniae isolate, both of which expressed the same ESBL SHV- 12. Whereas no plasmid was identified in the E. cloacae isolate, K. pneumoniae K149 possessed two conjugative plasmids, one that harbored the qnrA and bla (SHV)-12 genes whereas the other expressed the carbapenemase gene bla (IMP-4). The qnrA gene, was located in both cases downstream of the orf513 recombinase gene and upstream of the qnrA1 gene, a structure identical to that found in sul1-type integron In36 and qnrA-positive strains from Shanghai, China. However, the gene cassettes of the sul1-type integrons were different. This study identified the first plasmid-mediated quinolone resistance determinant in Enterobacteriaceae in Australia.
Resumo:
We describe a case of bacteremia due to an as yet unclassified Acinetobacter genomic species 17-like strain. The recognition of this microorganism as non-Acinetobacter baumannii may have important epidemiological implications, as it relieves the hospital of the implementation of barrier precautions for patients infected or colonized as may be necessary with a multiresistant A. baumannii epidemic.
Resumo:
Extended-spectrum β-lactamases (ESBLs) form a heterogeneous group that share the property of hydrolytic activity against the oxyimino-β-lactams while remaining susceptible to inhibition by β-lactamase inhibitors, such as clavulanic acid. From a clinical point of view, they are important because they confer resistance to penicillins, aztreonam, and cephalosporins, and ESBL-producing organisms are typically also resistant to aminoglycosides, trimethoprim-sulfamethoxazole, and quinolones [1]. Until recently, the main problem posed by ESBLs was related to nosocomial outbreaks caused by ESBL-producing Klebsiella species. These outbreaks are usually clonal, the strains are mainly spread through cross-transmission, and the risk factors are similar to those found for other multidrug-resistant nosocomial pathogens [2]. In Europe and the United States, most ESBL-producing Klebsiella isolates harbored enzymes belonging to the TEM and SHV families [3]. Detection of colonized patients by performing surveillance cultures within affected units, isolation precautions for colonized patients, and restriction of oxyimino-β-lactam use are frequently useful for the control of these outbreaks [1]. There is no evidence that hospital-acquired ESBL-producing klebsiellae are decreasing in importance—in fact, data from the Centers for Disease Control and Prevention show that 20.6% of Klebsiella pneumoniae isolates from United States intensive care units in 2003 were probable producers of ESBL [4]. This represented a 47% increase, compared with the preceding 5 years. However, during the last few years, an impressive increase in the number of ESBL-producing Escherichia coli (and, less frequently, other Enterobacteriaceae) is being described in several parts of the world [5–8]. This emergent phenomenon shows some differences from the problem posed by Klebsiella species; many of these ESBL-producing E. coli are isolated …
Resumo:
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, particularly those producing CTX-M types of ESBL, are emerging pathogens. Bacteremia caused by these organisms represents a clinical challenge, because the organisms are frequently resistant to the antimicrobials recommended for treatment of patients with suspected E. coli sepsis. METHODS:A cohort study was performed that included all episodes of bloodstream infection due to ESBL-producing E. coli during the period from January 2001 through March 2005. Data on predisposing factors, clinical presentation, and outcome were collected. ESBLs were characterized using isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-three episodes (8.8% of cases of bacteremia due to E. coli) were included; 70% of the isolates produced a CTX-M type of ESBL. The most frequent origins of infection were the urinary (46%) and biliary tracts (21%). Acquisition was nosocomial in 21 cases (49%), health care associated in 14 cases (32%), and strictly community acquired in 8 cases (19%). Thirty-eight percent and 25% of patients had obstructive diseases of the urinary and biliary tracts, respectively, and 38% had recently received antimicrobials. Nine patients (21%) died. Compared with beta-lactam/beta-lactamase-inhibitor and carbapenem-based regimens, empirical therapy with cephalosporins or fluoroquinolones was associated with a higher mortality rate (9% vs. 35%; P=.05) and needed to be changed more frequently (24% vs. 78%; P=.001). CONCLUSIONS: ESBL-producing E. coli is a significant cause of bloodstream infection in hospitalized and nonhospitalized patients in the context of the emergence of CTX-M enzymes. Empirical treatment of sepsis potentially caused by E. coli may need to be reconsidered in areas where such ESBL-producing isolates are present.
Resumo:
BACKGROUND: Extended-spectrum beta-lactamase (ESBL)-producing members of the Enterobacteriaceae family are important nosocomial pathogens. Escherichia coli producing a specific family of ESBL (the CTX-M enzymes) are emerging worldwide. The epidemiology of these organisms as causes of nosocomial infection is poorly understood. The aims of this study were to investigate the clinical and molecular epidemiology of nosocomial infection or colonization due to ESBL-producing E. coli in hospitalized patients, consider the specific types of ESBLs produced, and identify the risk factors for infection and colonization with these organisms. METHODS: All patients with nosocomial colonization and/or infection due to ESBL-producing E. coli in 2 centers (a tertiary care hospital and a geriatric care center) identified between January 2001 and May 2002 were included. A double case-control study was performed. The clonal relatedness of the isolates was studied by repetitive extragenic palindromic-polymerase chain reaction and pulsed-field gel electrophoresis. ESBLs were characterized by isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-seven case patients were included. CTX-M-producing E. coli were clonally unrelated and more frequently susceptible to nonoxyimino-beta-lactams. Alternately, isolates producing SHV- and TEM-type ESBL were epidemic and multidrug resistant. Urinary catheterization was a risk factor for both CTX-M-producing and SHV-TEM-producing isolates. Previous oxyimino-beta-lactam use, diabetes, and ultimately fatal or nonfatal underlying diseases were independent risk factors for infection or colonization with CTX-M-producing isolates, whereas previous fluoroquinolone use was associated with infection or colonization with SHV-TEM-producing isolates. CONCLUSIONS: The epidemiology of ESBL-producing E. coli as a cause of nosocomial infection is complex. Sporadic CTX-M-producing isolates coexisted with epidemic multidrug-resistant SHV-TEM-producing isolates. These data should be taken into account for the design of control measures.
Resumo:
Clonally complex infections by Mycobacterium tuberculosis are progressively more accepted. Studies of their dimension in epidemiological scenarios where the infective pressure is not high are scarce. Our study systematically searched for clonally complex infections (mixed infections by more than one strain and simultaneous presence of clonal variants) by applying mycobacterial interspersed repetitive-unit (MIRU)-variable-number tandem-repeat (VNTR) analysis to M. tuberculosis isolates from two population-based samples of respiratory (703 cases) and respiratory-extrapulmonary (R+E) tuberculosis (TB) cases (71 cases) in a context of moderate TB incidence. Clonally complex infections were found in 11 (1.6%) of the respiratory TB cases and in 10 (14.1%) of those with R+E TB. Among the 21 cases with clonally complex TB, 9 were infected by 2 independent strains and the remaining 12 showed the simultaneous presence of 2 to 3 clonal variants. For the 10 R+E TB cases with clonally complex infections, compartmentalization (different compositions of strains/clonal variants in independent infected sites) was found in 9 of them. All the strains/clonal variants were also genotyped by IS6110-based restriction fragment length polymorphism analysis, which split two MIRU-defined clonal variants, although in general, it showed a lower discriminatory power to identify the clonal heterogeneity revealed by MIRU-VNTR analysis. The comparative analysis of IS6110 insertion sites between coinfecting clonal variants showed differences in the genes coding for a cutinase, a PPE family protein, and two conserved hypothetical proteins. Diagnostic delay, existence of previous TB, risk for overexposure, and clustered/orphan status of the involved strains were analyzed to propose possible explanations for the cases with clonally complex infections. Our study characterizes in detail all the clonally complex infections by M. tuberculosis found in a systematic survey and contributes to the characterization that these phenomena can be found to an extent higher than expected, even in an unselected population-based sample lacking high infective pressure.
Resumo:
The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.
Resumo:
Under certain circumstances, it is possible to identify clonal variants of Mycobacterium tuberculosis infecting a single patient, probably as a result of subtle genetic rearrangements in part of the bacillary population. We systematically searched for these microevolution events in a different context, namely, recent transmission chains. We studied the clustered cases identified using a population-based universal molecular epidemiology strategy over a 5-year period. Clonal variants of the reference strain defining the cluster were found in 9 (12%) of the 74 clusters identified after the genotyping of 612 M. tuberculosis isolates by IS6110 restriction fragment length polymorphism analysis and mycobacterial interspersed repetitive units-variable-number tandem repeat typing. Clusters with microevolution events were epidemiologically supported and involved 4 to 9 cases diagnosed over a 1- to 5-year period. The IS6110 insertion sites from 16 representative isolates of reference and microevolved variants were mapped by ligation-mediated PCR in order to characterize the genetic background involved in microevolution. Both intragenic and intergenic IS6110 locations resulted from these microevolution events. Among those cases of IS6110 locations in intergenic regions which could have an effect on the regulation of adjacent genes, we identified the overexpression of cytochrome P450 in one microevolved variant using quantitative real-time reverse transcription-PCR. Our results help to define the frequency with which microevolution can be expected in M. tuberculosis transmission chains. They provide a snapshot of the genetic background of these subtle rearrangements and identify an event in which IS6110-mediated microevolution in an isogenic background has functional consequences.