5 resultados para Field trials
Resumo:
BACKGROUND About one half of adults with acute lymphoblastic leukemia are not cured of the disease and ultimately die. The objective of this study was to explore the factors influencing the outcome of adult patients with relapsed acute lymphoblastic leukemia. DESIGN AND METHODS. We analyzed the characteristics, the outcome and the prognostic factors for survival after first relapse in a series of 263 adult patients with acute lymphoblastic leukemia (excluding those with mature B-cell acute lymphoblastic leukemia) prospectively enrolled in four consecutive risk-adapted PETHEMA trials. RESULTS. The median overall survival after relapse was 4.5 months (95% CI, 4-5 months) with a 5-year overall survival of 10% (95% CI, 8%-12%); 45% of patients receiving intensive second-line treatment achieved a second complete remission and 22% (95% CI, 14%-30%) of them remained disease free at 5 years. Factors predicting a good outcome after rescue therapy were age less than 30 years (2-year overall survival of 21% versus 10% for those over 30 years old; P<0.022) and a first remission lasting more than 2 years (2-year overall survival of 36% versus 17% among those with a shorter first remission; P<0.001). Patients under 30 years old whose first complete remission lasted longer than 2 years had a 5-year overall survival of 38% (95% CI, 23%-53%) and a 5-year disease-free survival of 53% (95% CI, 34%-72%). CONCLUSIONS The prognosis of adult patients with acute lymphoblastic leukemia who relapse is poor. Those aged less than 30 years with a first complete remission lasting longer than 2 years have reasonable possibilities of becoming long-term survivors while patients over this age or those who relapse early cannot be successfully rescued using the therapies currently available.
Resumo:
One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.
Resumo:
A workshop was convened to discuss best practices for the assessment of drug-induced liver injury (DILI) in clinical trials. In a breakout session, workshop attendees discussed necessary data elements and standards for the accurate measurement of DILI risk associated with new therapeutic agents in clinical trials. There was agreement that in order to achieve this goal the systematic acquisition of protocol-specified clinical measures and lab specimens from all study subjects is crucial. In addition, standard DILI terms that address the diverse clinical and pathologic signatures of DILI were considered essential. There was a strong consensus that clinical and lab analyses necessary for the evaluation of cases of acute liver injury should be consistent with the US Food and Drug Administration (FDA) guidance on pre-marketing risk assessment of DILI in clinical trials issued in 2009. A recommendation that liver injury case review and management be guided by clinicians with hepatologic expertise was made. Of note, there was agreement that emerging DILI signals should prompt the systematic collection of candidate pharmacogenomic, proteomic and/or metabonomic biomarkers from all study subjects. The use of emerging standardized clinical terminology, CRFs and graphic tools for data review to enable harmonization across clinical trials was strongly encouraged. Many of the recommendations made in the breakout session are in alignment with those made in the other parallel sessions on methodology to assess clinical liver safety data, causality assessment for suspected DILI, and liver safety assessment in special populations (hepatitis B, C, and oncology trials). Nonetheless, a few outstanding issues remain for future consideration.
Resumo:
Recently, immune edition has been recognized as a new hallmark of cancer. In this respect, some clinical trials in breast cancer have reported imppressive outcomes related to laboratory immune findings, especially in the neoadjuvant and metastatic setting. Infiltration by tumor infiltrating lymphocytes (TIL) and their subtypes, tumor-associated macrophages (TAM) and myeloid-derived suppressive cells (MDSC) seem bona fide prognostic and even predictive biomarkers, that will eventually be incorporated into diagnostic and therapeutic algorithms of breast cancer. In addition, the complex interaction of costimulatory and coinhibitory molecules on the immune synapse and the different signals that they may exert represent another exciting field to explore. In this review we try to summarize and elucidate these new concepts and knowledge from a translational perspective focusing on breast cancer, paying special attention to those aspects that might have more significance in clinical practice and could be useful to design successful therapeutic strategies in the future.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.