13 resultados para meat taste
em Université de Lausanne, Switzerland
Resumo:
Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.
Resumo:
To analyze the neural basis of electric taste we performed electrical neuroimaging analyses of event-related potentials (ERPs) recorded while participants received electrical pulses to the tongue. Pulses were presented at individual taste threshold to excite gustatory fibers selectively without concomitant excitation of trigeminal fibers and at high intensity evoking a prickling and, thus, activating trigeminal fibers. Sour, salty and metallic tastes were reported at both intensities while clear prickling was reported at high intensity only. ERPs exhibited augmented amplitudes and shorter latencies for high intensity. First activations of gustatory areas (bilateral anterior insula, medial orbitofrontal cortex) were observed at 70-80ms. Common somatosensory regions were more strongly, but not exclusively, activated at high intensity. Our data provide a comprehensive view on the dynamics of cortical processing of the gustatory and trigeminal portions of electric taste and suggest that gustatory and trigeminal afferents project to overlapping cortical areas.
Resumo:
Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.
Resumo:
Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.
Resumo:
BACKGROUND: Consumption of red meat has been related to increased risk of several cancers. Cooking methods could modify the magnitude of this association, as production of chemicals depends on the temperature and duration of cooking. METHODS: We analyzed data from a network of case-control studies conducted in Italy and Switzerland between 1991 and 2009. The studies included 1465 oral and pharyngeal, 198 nasopharyngeal, 851 laryngeal, 505 esophageal, 230 stomach, 1463 colon, 927 rectal, 326 pancreatic, 3034 breast, 454 endometrial, 1031 ovarian, 1294 prostate and 767 renal cancer cases. Controls included 11 656 patients admitted for acute, non-neoplastic conditions. Odds ratios (ORs) and confidence intervals (CIs) were estimated by multiple logistic regression models, adjusted for known confounding factors. RESULTS: Daily intake of red meat was significantly associated with the risk of cancer of the oral cavity and pharynx (OR for increase of 50 g/day = 1.38; 95% CI: 1.26-1.52), nasopharynx (OR = 1.29; 95% CI: 1.04-1.60), larynx (OR = 1.46; 95% CI: 1.30-1.64), esophagus (OR = 1.46; 95% CI: 1.23-1.72), colon (OR = 1.17; 95% CI: 1.08-1.26), rectum (OR = 1.22; 95% CI:1.11-1.33), pancreas (OR = 1.51; 95% CI: 1.25-1.82), breast (OR = 1.12; 95% CI: 1.04-1.19), endometrium (OR = 1.30; 95% CI: 1.10-1.55) and ovary (OR = 1.29; 95% CI: 1.16-1.43). Fried meat was associated with a higher risk of cancer of oral cavity and pharynx (OR = 2.80; 95% CI: 2.02-3.89) and esophagus (OR = 4.52; 95% CI: 2.50-8.18). Risk of prostate cancer increased for meat cooked by roasting/grilling (OR = 1.31; 95% CI: 1.12-1.54). No heterogeneity according to cooking methods emerged for other cancers. Nonetheless, significant associations with boiled/stewed meat also emerged for cancer of the nasopharynx (OR = 1.97; 95% CI: 1.30-3.00) and stomach (OR = 1.86; 95% CI: 1.20-2.87). CONCLUSIONS: Our analysis confirmed red meat consumption as a risk factor for several cancer sites, with a limited impact of cooking methods. These findings, thus, call for a limitation of its consumption in populations of Western countries.
Resumo:
INTRODUCTION The chemical senses smell and taste, detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to and interpreted in central brain regions. Drosophila provides an attractive model to study chemosensory coding, because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, virtually all of the peripheral chemosensory neurons are easily accessible for physiological analysis, as they are exposed on the surface of sensory organs in specialized sensory hairs called sensilla. In recent years, improvements in microscopy and instrumentation for electrode manipulation have opened up the much smaller Drosophila system to electrophysiological techniques, powerfully complementing many years of molecular genetic studies. As with most electrophysiological methods, there is probably no substitute for learning this technique directly from a laboratory in which it is already established. This protocol describes the basics of setting up the electrophysiology rig and stimulus delivery device, sample preparation, and performing and analyzing recordings of stimulus-evoked activity from Drosophila taste sensilla.
Resumo:
Sweet dysgeusia, a rare taste disorder, may be encountered in severe anti-acetylcholine receptor antibody (AChRAb)-myasthenia gravis (MG). A 42 year-old man reported progressive loss of sweet taste evolving for almost 10 weeks, revealing an AChRAb-positive MG with thymoma. Improvement of sweet perception paralleled reduction of the MG composite score during the 15 months follow up period, with immunosuppressive and surgical treatments. We suggest that sweet dysgeusia is a non-motor manifestation of MG that may result from a thymoma-dependent autoimmune mechanism targeting gustducin-positive G-protein-coupled taste receptor cells, in line with recent data from MRL/MpJ-Fas lpr/ (MRL/lpr) transgenic mice with autoimmune disease.
Resumo:
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.
Resumo:
Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia--a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs--indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved "antennal IRs," which likely define the first olfactory receptor family of insects, and species-specific "divergent IRs," which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.
Resumo:
What we put into our mouths can nourish or kill us. A new study uses state-of-the-art electroencephalogram decoding to detail how we and our brains know what we taste.
Resumo:
La presse a donné un large écho à une récente publication émanant du Centre international de recherche sur le cancer, une agence spécialisée de l'Organisation mondiale de la santé. Cette publication présente la reclassification de certains aliments carnés comme agents cancérigènes. Comme institution universitaire de santé publique, l'IUMSP souhaite apporter des précisions