16 resultados para Play-Based Learning
em Université de Lausanne, Switzerland
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
AIM: The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. METHODS: This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. RESULTS: The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. CONCLUSIONS: Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.
Resumo:
We present an approach to teaching evidence-based management (EBMgt) that trains future managers how to produce local evidence. Local evidence is causally interpretable data, collected on-site in companies to address a specific business problem. Our teaching method is a variant of problem-based learning, a method originally developed to teach evidence-based medicine. Following this method, students learn an evidence-based problem-solving cycle for addressing actual business cases. Executing this cycle, students use and produce scientific evidence through literature searches and the design of local, experimental tests of causal hypotheses. We argue the value of teaching EBMgt with a focus on producing local evidence, how it can be taught, and what can be taught. We conclude by outlining our contribution to the literature on teaching EBMgt and by discussing limitations of our approach.
Resumo:
When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those actions that led to a high payoff. However, individuals do not always have to physically perform an action in order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their consequences without actually performing them. Such fictitious learners can select actions with high payoffs without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the learning dynamics stabilize at an approximate distance of root n/(2 lambda(e)) away from the optimum, where lambda(e) is an effective learning performance parameter depending on the learning rule under scrutiny. Individual learners are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large population of learners performing payoff-biased social learning, in which case lambda(e) becomes proportional to population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and population size for the evolution of complex cultural traits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: To identify characteristics of consultations that do not conform to the traditionally understood communication 'dyad', in order to highlight implications for medical education and develop a reflective 'toolkit' for use by medical practitioners and educators in the analysis of consultations. DESIGN: A series of interdisciplinary research workshops spanning 12 months explored the social impact of globalisation and computerisation on the clinical consultation, focusing specifically on contemporary challenges to the clinician-patient dyad. Researchers presented detailed case studies of consultations, taken from their recent research projects. Drawing on concepts from applied sociolinguistics, further analysis of selected case studies prompted the identification of key emergent themes. SETTING: University departments in the UK and Switzerland. PARTICIPANTS: Six researchers with backgrounds in medicine, applied linguistics, sociolinguistics and medical education. One workshop was also attended by PhD students conducting research on healthcare interactions. RESULTS: The contemporary consultation is characterised by a multiplicity of voices. Incorporation of additional voices in the consultation creates new forms of order (and disorder) in the interaction. The roles 'clinician' and 'patient' are blurred as they become increasingly distributed between different participants. These new consultation arrangements make new demands on clinicians, which lie beyond the scope of most educational programmes for clinical communication. CONCLUSIONS: The consultation is changing. Traditional consultation models that assume a 'dyadic' consultation do not adequately incorporate the realities of many contemporary consultations. A paradox emerges between the need to manage consultations in a 'super-diverse' multilingual society, while also attending to increasing requirements for standardised protocol-driven approaches to care prompted by computer use. The tension between standardisation and flexibility requires addressing in educational contexts. Drawing on concepts from applied sociolinguistics and the findings of these research observations, the authors offer a reflective 'toolkit' of questions to ask of the consultation in the context of enquiry-based learning.
Resumo:
The potential of the Internet as a medium through which to teach basic and applied immunology lies in the ability to illustrate complex concepts in new ways for audiences that are diverse and often geographically dispersed. This article explores two collaborative Internet-based learning projects (also known as e-learning projects) that are under development: Immunology Online, which will present an Internet-based curriculum in basic and clinical immunology to Swiss undergraduate and graduate students across five campuses; and the OCTAVE project, which will offer online training to an international cadre of new investigators, the members of which are carrying out clinical trials of vaccines against HIV infection.
Resumo:
INTERMED training implies a three week course, integrated in the "primary care module" for medical students in the first master year at the school of medicine in Lausanne. INTERMED uses an innovative teaching method based on repetitive sequences of e-learning-based individual learning followed by collaborative learning activities in teams, named Team-based learning (TBL). The e-learning takes place in a web-based virtual learning environment using a series of interactive multimedia virtual patients. By using INTERMED students go through a complete medical encounter applying clinical reasoning and choosing the diagnostic and therapeutic approach. INTERMED offers an authentic experience in an engaging and safe environment where errors are allowed and without consequences.
Resumo:
L'objectif principal de ce travail était d'explorer les relations parent-enfant et les processus d'apprentissage familiaux associés aux troubles anxieux. A cet effet, des familles ayant un membre anxieux (la mère ou l'enfant) ont été comparées avec des familles n'ayant aucun membre anxieux. Dans une première étude, l'observation de l'interaction mère-enfant, pendant une situation standardisée de jeu, a révélé que les mères présentant un trouble panique étaient plus susceptibles de se montrer verbalement contrôlantes, critiques et moins sensibles aux besoins de l'enfant, que les mères qui ne présentaient pas de trouble panique. Une deuxième étude a examiné les perceptions des différents membres de la famille quant aux relations au sein de la famille et a indiqué que, par comparaison aux adolescents non-anxieux, les adolescents anxieux étaient plus enclins à éprouver un sentiment d'autonomie individuelle diminué par rapport à leurs parents. Finalement, une troisième étude s'est intéressée à déterminer l'impact d'expériences d'apprentissage moins directes dans l'étiologie de l'anxiété. Les résultats ont indiqué que les mères présentant un trouble panique étaient plus enclines à s'engager dans des comportements qui maintiennent la panique et à impliquer leurs enfants dans ces comportements, que les mères ne présentant pas de trouble panique. En se basant sur des recherches antérieures qui ont établi une relation entre le contrôle parental, la perception de contrôle chez l'enfant et les troubles anxieux, le présent travail non seulement confirme ce lien mais propose également un modèle pour résumer l'état actuel des connaissances concernant les processus familiaux et le développement des troubles anxieux. Deux routes ont été suggérées par lesquelles l'anxiété pourrait être transmise de manière intergénérationnelle. Chacune de ces routes attribue un rôle important à la perception de contrôle chez l'enfant. L'idée est que lorsque les enfants présentent une prédisposition à interpréter le comportement de leurs parents comme hors de leur contrôle, ils seraient plus enclins à développer de l'anxiété. A ce titre, la perception du contrôle représenterait un tampon entre le comportement de contrôle/surprotection des parents et le trouble anxieux chez l'enfant. - The principal objective of the present work was to explore parent-child relationships and family learning processes associated with anxiety disorders. To this purpose, families with and without an anxious family member (mother or child) were compared. In a first study, observation of mother-child interaction, during a standard play situation, revealed that mothers with panic disorder were more likely to display verbal control and criticism, and less likely to display sensitivity toward their children than mothers without panic disorder. A second study examined family members' perceptions of family relationships and indicated that compared to non-anxious adolescents, anxious adolescents were more prone to experience a diminished sense of individual autonomy in relation to their parents. Finally a third study was interested in determining the effect of less direct learning experiences in the aetiology of anxiety. Results indicated that mothers with panic disorder were more likely to engage in panic-maintaining behaviour and to involve their children in this behaviour than mothers without panic disorder. Based on previous research showing a relationship between parental control, children's perception of control, and anxiety disorders, the present work not only further adds evidence to support this link but also proposes a model summarizing the current knowledge concerning family processes and the development of anxiety disorders. Two pathways have been suggested through which anxiety may be intergenerationally transmitted. Both pathways assign an important role to children's perception of control. The idea is that whenever children have a predisposition towards interpreting their parents' behaviour as beyond of their control, they may be more prone to develop anxiety. As such, perceived control may represent a buffer between parental overcontrolling/overprotective behaviours and childhood anxiety disorder.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.
Resumo:
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Resumo:
In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.