82 resultados para Phosphodiesterase Type V

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Functional specialization is tightly linked to the ability of eukaryotic cells to acquire a particular shape. Cell morphogenesis, in turn, relies on the capacity to establish and maintain cell "polarity", which is achieved by orienting the trafficking of signaling molecules and organelles towards specific cellular locations and/or membrane domains. The "oriented" transport is based upon cytoskeletal polymers, microtubules and actin filaments, which serve as tracks for molecular motors. These latter generate motion that is translated either into pulling forces or directed transport. Fission yeast, a rod-like unicellular eukaryote, shapes itself by restricting growth at cell tips through the concerted activity of microtubules and actin cables. Microtubules, which assemble into 2-6 bundles and run parallel to the long axis of the cell, serve to orient growth to the tips. Growth is supported by the actin cytoskeleton, which provides tracks, the cables, for motor-based transport of secretory vesicles. The molecular motors, which bind cargos and deliver them to the tips along cables, are also known as type V myosins (hereafter indicated as myosin V). How the bundles of parallel actin filaments, i.e. the cables, extend from the tips through the cell and whether they serve any other purpose, besides providing tracks, is poorly understood. It is also unclear how the crosstalk between the two cytoskeletal systems is achieved. These are the basic questions I addressed during my PhD. The first part of the thesis work (Chapter two) suggests that the sole function of actin cables in polarized growth is to serve as tracks for motors. The data indicate that cells may have evolved two cytoskeletal systems to provide robustness to the polarization process but in principle a unique cytoskeleton might have been able to direct and support polarized growth. How actin cables are organized within the cell to optimize cargo transport is addressed later on (Chapter three). The major finding, based on the actin cable defect of cells lacking myosin Vs, is that actin filaments self-organize through the activity of the transport motors. In fact, by delivering cargos to cell tips and exerting physical pulling forces on actin filaments, Myosin Vs contribute not only to polarize cargo transport but also actin tracks. Among the cargos transported by Myosin V, which may be relevant to its function in organizing cables, there is likely the endoplasmic reticulum (ER). Actin cables, which run parallel to cortical ER, may serve as tracks for Myosin V. Myosin V-driven displacement, in turn, may account for the dynamic expansion and organization of ER during polarized growth as suggested in Chapter four. The last part of the work (Chapter five) highlights the existence of a crosstalk between actin and microtubules. In absence of myosin V, indeed, microtubules contribute to actin cable organization, likely playing a scaffolding/tethering function. Whether or not the kinesin 1, Klp3, plays any role in such process has to be demonstrated. In conclusion the work proposes a novel role for myosin Vs in actin organization, besides its transport function, and provides molecular tools to further dissect the role of this type of myosin in fission yeast. - La spécialisation fonctionnelle est étroitement connectée à la capacité des cellules eucaryotes d'acquérir une forme particulière. La morphogenèse cellulaire à son tour, est basée sur la capacité d'établir et de maintenir la polarité cellulaire, polarité réalisée en orientant le trafic des molécules signales et des organelles vers des zones cellulaires spécifiques. Ce transport directionnel dépend des polymères du cytosquelette, microtubules et microfilaments, qui servent comme des voies pour les moteurs moléculaires. Ces derniers engendrent du mouvement, traduit soit en force de traction soit en transport directionnel. La levure fissipare, un eucaryote unicellulaire en forme de bâtonnet, acquière sa forme en limitant sa croissance aux extrémités par l'action concertée des microtubules et de l'actine. Les microtubules, qui s'assemblent de façon antiparallèle et parcourent la cellule parallèlement à l'axe longitudinal, servent à orienter la croissance aux extrémités. Cette croissance est permise par le cytosquelette d'actine, fournissant des voies, les câbles, pour le transport actif des vésicules de sécrétion. Les moteurs moléculaires, responsables de ce transport actif sont aussi appelés myosines de type V (par la suite appelés myosines V). La manière dont ces câbles s'étendent depuis l'extrémité jusqu'à l'intérieur de la cellule est peu connue. De plus, on ignore également si ces câbles présentent une fonction autre que le transport. L'interaction entre les deux cytosquelettes est également obscure. Ce sont ces questions de base auxquelles j'ai tenté de répondre lors de ma thèse. La première partie de cette thèse (chapitre II) suggère que les câbles d'actine, pendant la croissance polarisée, fonctionnent uniquement comme des voies pour les moteurs moléculaires. Les données indiqueraient que les cellules ont fait évoluer deux systèmes de cytosquelette pour assurer plus de robustesse au processus de polarisation, bien que, comme nous le verrons, un système unique est suffisant. Au chapitre III, nous verrons comment les câbles d'actine sont organisés à l'intérieur de la cellule afin d'optimiser le transport des cargo. La découverte majeure, réalisée en observant des cellules dont la myosine V fait défaut, est que ces filaments d'actine s'auto organisent grâce au passage des moteurs moléculaires le long de ces voies. En réalité, en délivrant les cargos aux extrémités de la cellule et en exerçant des forces de traction sur les câbles, les myosines V contribuent non seulement à polariser le transport mais également à polariser les voies elles mêmes. Nous verrons également au chapitre IV, que parmi les cargos importants pour l'organisation des câbles, il y aurait le réticulum endoplasmique (RE). En effet, les câbles d'actine, qui s'étalent parallèlement au RE cortical, pourraient servir comme voie pour la myosine V. Cette dernière en retour pourrait être responsable de l'expansion dynamique et de l'organisation du RE pendant la croissance polarisée.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several adenosine 3',5'-cyclic monophosphate (cAMP)-hydrolyzing phosphodiesterase isozymes are present in the pulmonary vasculature. The present study was designed to determine the effect of selective inhibitors of phosphodiesterase subtypes on prostaglandin E2 (PGE2)-induced relaxation of isolated fourth-generation pulmonary arteries of newborn lambs. PGE2 and forskolin caused pulmonary arteries to relax and induced an increase in the intracellular cAMP content in the vessels. The relaxation and change in cAMP content were augmented by milrinone and rolipram, inhibitors of phosphodiesterase type 3 (PDE3) and type 4 (PDE4), respectively. The augmentation in relaxation and the increase in cAMP content caused by milrinone plus rolipram was greater than the sum of the responses caused by either of the inhibitors alone. 8-Methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine, an inhibitor of phosphodiesterase type 1, had no effect on relaxation and change in cAMP induced by PGE2 and forskolin. Acetylcholine alone had no effect on cAMP content in the vessels but augmented the relaxation and the increase in cAMP induced by PGE2 and forskolin in arteries with endothelium. This effect was not observed in arteries without endothelium or in arteries with endothelium treated with NG-nitro-L-arginine. These results suggest that PDE3 and PDE4 are the primary enzymes hydrolyzing cAMP of pulmonary arteries of newborn lambs and that an inhibition of both PDE3 and PDE4 would result in a greater effect than that caused by inhibition of either one of the subtype isozymes alone. Furthermore, endothelium-derived nitric oxide may enhance cAMP-mediated relaxation by inhibition of PDE3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Pulmonary vascular diseases are increasingly recognised as important clinical conditions. Pulmonary hypertension associated with a range of aetiologies is difficult to treat and associated with progressive morbidity and mortality. Current therapies for pulmonary hypertension include phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, or prostacyclin mimetics. However, none of these provide a cure and the clinical benefits of these drugs individually decline over time. There is, therefore, an urgent need to identify new treatment strategies for pulmonary hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the PPARbeta/delta agonist GW0742 induces vasorelaxation in systemic and pulmonary vessels. Using tissue from genetically modified mice, we show that the dilator effects of GW0742 are independent of the target receptor PPARbeta/delta or cell surface prostacyclin (IP) receptors. In aortic tissue, vascular relaxant effects of GW0742 were not associated with increases in cGMP, cAMP or hyperpolarisation, but were attributed to inhibition of RhoA activity. In a rat model of hypoxia-induced pulmonary hypertension, daily oral dosing of animals with GW0742 (30 mg/kg) for 3 weeks significantly reduced the associated right heart hypertrophy and right ventricular systolic pressure. GW0742 had no effect on vascular remodelling induced by hypoxia in this model. CONCLUSIONS/SIGNIFICANCE: These observations are the first to show a therapeutic benefit of 'PPARbeta/delta' agonists in experimental pulmonary arterial hypertension and provide pre-clinical evidence to favour clinical trials in man.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. AIM OF THE STUDY: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O₂) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. CONCLUSIONS: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension and death. Administration of nitric oxide (NO) alone remains ineffective in CDH cases. We investigated in near full-term lambs with and without CDH the role of guanylate cyclase (GC), the enzyme activated by NO in increasing cyclic 3'-5'-guanylosine monophosphate, and the role of phosphodiesterase (PDE) 5, the enzyme-degrading cyclic 3'-5'-guanylosine monophosphate. METHODS: Congenital diaphragmatic hernia was surgically created in fetal lambs at 85 days of gestation. Pulmonary hemodynamics were assessed by means of pressure and blood flow catheters (135 days). In vitro, we tested drugs on rings of isolated pulmonary vessels. RESULTS: In vivo, sodium nitroprusside, a direct NO donor, and methyl-2(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5 trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032) and Zaprinast, both PDE 5 blockers, reduced pulmonary vascular resistance in CDH and non-CDH animals. The activation of GC by sodium nitroprusside and the inhibition of PDE 5 by T-1032 were less effective in CDH animals. In vitro, the stimulation of GC by 3(5'hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) (a benzyl indazole derivative) and the inhibition of PDE 5 by T-1032 were less effective in pulmonary vascular rings from CDH animals. The YC-1-induced vasodilation in rings from CDH animals was higher when associated with the PDE 5 inhibitor T-1032. CONCLUSIONS: Guanylate cyclase and PDE 5 play a role in controlling pulmonary vascular tone in fetal lambs with or without CDH. Both enzymes seem to be impaired in fetal lambs with CDH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Accurate quantification of the prevalence of human immunodeficiency virus type 1 (HIV-1) drug resistance in patients who are receiving antiretroviral therapy (ART) is difficult, and results from previous studies vary. We attempted to assess the prevalence and dynamics of resistance in a highly representative patient cohort from Switzerland. Methods. On the basis of genotypic resistance test results and clinical data, we grouped patients according to their risk of harboring resistant viruses. Estimates of resistance prevalence were calculated on the basis of either the proportion of individuals with a virologic failure or confirmed drug resistance (lower estimate) or the frequency-weighted average of risk group-specific probabilities for the presence of drug resistance mutations (upper estimate). Results. Lower and upper estimates of drug resistance prevalence in 8064 ART-exposed patients were 50% and 57% in 1999 and 37% and 45% in 2007, respectively. This decrease was driven by 2 mechanisms: loss to follow-up or death of high-risk patients exposed to mono- or dual-nucleoside reverse-transcriptase inhibitor therapy (lower estimates range from 72% to 75%) and continued enrollment of low-risk patients who were taking combination ART containing boosted protease inhibitors or nonnucleoside reverse-transcriptase inhibitors as first-line therapy (lower estimates range from 7% to 12%). A subset of 4184 participants (52%) had 1 study visit per year during 2002-2007. In this subset, lower and upper estimates increased from 45% to 49% and from 52% to 55%, respectively. Yearly increases in prevalence were becoming smaller in later years. Conclusions. Contrary to earlier predictions, in situations of free access to drugs, close monitoring, and rapid introduction of new potent therapies, the emergence of drug-resistant viruses can be minimized at the population level. Moreover, this study demonstrates the necessity of interpreting time trends in the context of evolving cohort populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To report a novel maculopathy in a patient with SCA1. To describe autofluorescence findings in family with SCA7 and associated cone-rod retinal dysfunction.Methods: 4 affected patients from two families were assessed to investigate a progressive loss of visual acuity (VA). Examinations included fundus photography, autofluorescence (AF) fundus fluorescein angiogragraphy (FFA) and optical coherence tomography. Electroretinogram (full-field) was performed in 2 affected patients. All patients had color vision testing using Ishihara pseudoisochromatic plates. Molecular analysis was performed in family 2.Results: The patient with known diagnosis of SCA1 had a visual acuity of 20/200 bilaterally and dyschromatopsia. He had saccadic pursuit. Fundus examination showed mild retinal pigment epithelium (RPE) changes at the macula. OCT showed bilateral macular serous detachment, which was not obvious at the FFA and explained his VA. AF imaging showed a central hyperfluorescence. The 45 year old proband from family 2 had a visual acuity of 200/20 and dyschromatopsia. ERG testing showed cone type dysfunction of photoreceptors. Her daughter affected at a younger age had the same ERGs findings. Fundus examination showed mild RPE changes in proband, normal findings in her daughter. AF imaging of both patients showed a ring of high density AF around the fovea. The ring was also obvious on near infrared AF. Later onset of gait imbalance led to the diagnosis of SCA7Conclusions: Within the group of spinocerebellar ataxias, only the type 7 is associated with retinal dysfunction. We present the first report of maculopathy associated with SCA1 causing severe vision loss. The ring of high density AF in SCA7 confirmed an early retinal photoreceptor dysfunction in patient with normal fundus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NK1.1+ T cells are an unusual subset of TCR alpha beta cells distinguished by their highly restricted V beta repertoire and predominant usage of an invariant V alpha 14-J alpha 281 chain. To assess whether a directed rearrangement mechanism could be responsible for this invariant alpha chain, we have analyzed V alpha 14 rearrangements by polymerase chain reaction and Southern blot in a panel of cloned T-T hybrids derived from thymic NK1.1+ T cells. As expected a high proportion (17/20) of the hybrids had rearranged V alpha 14 to J alpha 281. However, V alpha 14-J alpha 281 rearrangements always occurred on only one chromosome and were accompanied by other V alpha-J alpha rearrangements (not involving V alpha 14) on the homologous chromosome. These data argue that rigorous ligand selection rather than directed rearrangement is responsible for the high frequency of V alpha 14-J alpha 281 rearrangements in NK1.1+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. OBJECTIVES: To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. RESULTS: This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. CONCLUSIONS: Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type I hyperprolinemia (HPI) is an autosomal recessive disorder associated with cognitive and psychiatric troubles, caused by alterations of the Proline Dehydrogenase gene (PRODH) at 22q11. HPI results from PRODH deletion and/or missense mutations reducing proline oxidase (POX) activity. The goals of this study were first to measure in controls the frequency of PRODH variations described in HPI patients, second to assess the functional effect of PRODH mutations on POX activity, and finally to establish genotype/enzymatic activity correlations in a new series of HPI patients. Eight of 14 variants occurred at polymorphic frequency in 114 controls. POX activity was determined for six novel mutations and two haplotypes. The c.1331G>A, p.G444D allele has a drastic effect, whereas the c.23C>T, p.P8L allele and the c.[56C>A; 172G>A], p.[Q19P; A58T] haplotype result in a moderate decrease in activity. Among the 19 HPI patients, 10 had a predicted residual activity <50%. Eight out of nine subjects with a predicted residual activity > or = 50% bore at least one c.824C>A, p.T275N allele, which has no detrimental effect on activity but whose frequency in controls is only 3%. Our results suggest that PRODH mutations lead to a decreased POX activity or affect other biological parameters causing hyperprolinemia.