8 resultados para Industry Based Learning
em Université de Lausanne, Switzerland
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
AIM: The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. METHODS: This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. RESULTS: The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. CONCLUSIONS: Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.
Resumo:
We present an approach to teaching evidence-based management (EBMgt) that trains future managers how to produce local evidence. Local evidence is causally interpretable data, collected on-site in companies to address a specific business problem. Our teaching method is a variant of problem-based learning, a method originally developed to teach evidence-based medicine. Following this method, students learn an evidence-based problem-solving cycle for addressing actual business cases. Executing this cycle, students use and produce scientific evidence through literature searches and the design of local, experimental tests of causal hypotheses. We argue the value of teaching EBMgt with a focus on producing local evidence, how it can be taught, and what can be taught. We conclude by outlining our contribution to the literature on teaching EBMgt and by discussing limitations of our approach.
Resumo:
ABSTRACT This dissertation focuses on new technology commercialization, innovation and new business development. Industry-based novel technology may achieve commercialization through its transfer to a large research laboratory acting as a lead user and technical partner, and providing the new technology with complementary assets and meaningful initial use in social practice. The research lab benefits from the new technology and innovation through major performance improvements and cost savings. Such mutually beneficial collaboration between the lab and the firm does not require any additional administrative efforts or funds from the lab, yet requires openness to technologies and partner companies that may not be previously known to the lab- Labs achieve the benefits by applying a proactive procurement model that promotes active pre-tender search of new technologies and pre-tender testing and piloting of these technological options. The collaboration works best when based on the development needs of both parties. This means that first of all the lab has significant engineering activity with well-defined technological needs and second, that the firm has advanced prototype technology yet needs further testing, piloting and the initial market and references to achieve the market breakthrough. The empirical evidence of the dissertation is based on a longitudinal multiple-case study with the European Laboratory for Particle Physics. The key theoretical contribution of this study is that large research labs, including basic research, play an important role in product and business development toward the end, rather than front-end, of the innovation process. This also implies that product-orientation and business-orientation can contribute to basic re-search. The study provides practical managerial and policy guidelines on how to initiate and manage mutually beneficial lab-industry collaboration and proactive procurement.
Resumo:
OBJECTIVE: To identify characteristics of consultations that do not conform to the traditionally understood communication 'dyad', in order to highlight implications for medical education and develop a reflective 'toolkit' for use by medical practitioners and educators in the analysis of consultations. DESIGN: A series of interdisciplinary research workshops spanning 12 months explored the social impact of globalisation and computerisation on the clinical consultation, focusing specifically on contemporary challenges to the clinician-patient dyad. Researchers presented detailed case studies of consultations, taken from their recent research projects. Drawing on concepts from applied sociolinguistics, further analysis of selected case studies prompted the identification of key emergent themes. SETTING: University departments in the UK and Switzerland. PARTICIPANTS: Six researchers with backgrounds in medicine, applied linguistics, sociolinguistics and medical education. One workshop was also attended by PhD students conducting research on healthcare interactions. RESULTS: The contemporary consultation is characterised by a multiplicity of voices. Incorporation of additional voices in the consultation creates new forms of order (and disorder) in the interaction. The roles 'clinician' and 'patient' are blurred as they become increasingly distributed between different participants. These new consultation arrangements make new demands on clinicians, which lie beyond the scope of most educational programmes for clinical communication. CONCLUSIONS: The consultation is changing. Traditional consultation models that assume a 'dyadic' consultation do not adequately incorporate the realities of many contemporary consultations. A paradox emerges between the need to manage consultations in a 'super-diverse' multilingual society, while also attending to increasing requirements for standardised protocol-driven approaches to care prompted by computer use. The tension between standardisation and flexibility requires addressing in educational contexts. Drawing on concepts from applied sociolinguistics and the findings of these research observations, the authors offer a reflective 'toolkit' of questions to ask of the consultation in the context of enquiry-based learning.
Resumo:
The potential of the Internet as a medium through which to teach basic and applied immunology lies in the ability to illustrate complex concepts in new ways for audiences that are diverse and often geographically dispersed. This article explores two collaborative Internet-based learning projects (also known as e-learning projects) that are under development: Immunology Online, which will present an Internet-based curriculum in basic and clinical immunology to Swiss undergraduate and graduate students across five campuses; and the OCTAVE project, which will offer online training to an international cadre of new investigators, the members of which are carrying out clinical trials of vaccines against HIV infection.
Resumo:
INTERMED training implies a three week course, integrated in the "primary care module" for medical students in the first master year at the school of medicine in Lausanne. INTERMED uses an innovative teaching method based on repetitive sequences of e-learning-based individual learning followed by collaborative learning activities in teams, named Team-based learning (TBL). The e-learning takes place in a web-based virtual learning environment using a series of interactive multimedia virtual patients. By using INTERMED students go through a complete medical encounter applying clinical reasoning and choosing the diagnostic and therapeutic approach. INTERMED offers an authentic experience in an engaging and safe environment where errors are allowed and without consequences.