85 resultados para EPIDERMAL LANGERHANS CELLS
em Université de Lausanne, Switzerland
Resumo:
Claudin-1 (CLDN1) is a structural tight junction (TJ) protein and is expressed in differentiating keratinocytes and Langerhans cells in the epidermis. Our objective was to identify immunoreactive CLDN1 in human epidermal Langerhans cells and to examine the pattern of epidermal Langerhans cells in genetic human CLDN1 deficiency [neonatal ichthyosis, sclerosing cholangitis (NISCH) syndrome]. Epidermal cells from healthy human skin labelled with CLDN1-specific antibodies were analysed by confocal laser immunofluorescence microscopy and flow cytometry. Skin biopsy sections of two patients with NISCH syndrome were stained with an antibody to CD1a expressed on epidermal Langerhans cells. Epidermal Langerhans cells and a subpopulation of keratinocytes from healthy skin were positive for CLDN1. The gross number and distribution of epidermal Langerhans cells of two patients with molecularly confirmed NISCH syndrome, however, was not grossly altered. Therefore, CLDN1 is unlikely to play a critical role in migration of Langerhans cells (or their precursors) to the epidermis or their positioning within the epidermis. Our findings do not exclude a role of this TJ molecule once Langerhans cells have left the epidermis for draining lymph nodes.
Resumo:
Psoriasis is a common T cell-mediated autoimmune inflammatory disease. We show that blocking the interaction of alpha1beta1 integrin (VLA-1) with collagen prevented accumulation of epidermal T cells and immunopathology of psoriasis. Alpha1beta1 integrin, a major collagen-binding surface receptor, was exclusively expressed by epidermal but not dermal T cells. Alpha1beta1-positive T cells showed characteristic surface markers of effector memory cells and contained high levels of interferon-gamma but not interleukin-4. Blockade of alpha1beta1 inhibited migration of T cells into the epidermis in a clinically relevant xenotransplantation model. This was paralleled by a complete inhibition of psoriasis development, comparable to that caused by tumor necrosis factor-alpha blockers. These results define a crucial role for alpha1beta1 in controlling the accumulation of epidermal type 1 polarized effector memory T cells in a common human immunopathology and provide the basis for new strategies in psoriasis treatment focusing on T cell-extracellular matrix interactions.
Resumo:
A particular feature of gammadelta T cell biology is that cells expressing T cell receptor (TCR) using specific Vgamma/Vdelta segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all gammadelta T cells express Vgamma3/Vdelta1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vgamma3+ thymocytes. The role of gammadelta TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR delta chain (Vdelta6.3-Ddelta1-Ddelta2-Jdelta1-Cdelta), which can pair with Vgamma3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vdelta6.3Tg mice DETC were present and virtually all of them express Vdelta6.3. However, DETC were absent in TCR-delta(-/-) Vdelta6.3Tg mice, despite the fact that Vdelta6.3Tg gammadelta T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vdelta6.3Tg mice, a high proportion of in-frame Vdelta1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-delta (most probably Vdelta1) was required for the development of Vdelta6.3+ epidermal gammadelta T cells. Collectively our data demonstrate that TCR specificity is essential for the development of gammadelta T cells in the epidermis. Moreover, they show that the TCR-delta locus is not allelically excluded.
Resumo:
Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor.
Resumo:
Dendritic cells (DCs) serve as a link between the innate and adaptive immune systems. The activation state of DCs is crucial in this role. However, when DCs are isolated from lymphoid tissues, purified and placed in culture they undergo 'spontaneous' activation. The basis of this was explored, using up-regulation of DC surface MHC II, CD40, CD80 and CD86 as indicators of DC activation. No evidence was found for DC damage during isolation or for microbial products causing the activation. The culture activation of spleen DCs differed from that of Langerhans cells when released from E-cadherin-mediated adhesions, since E-cadherin was not detected and activation still occurred with β-catenin null DCs. Much of the activation could be attributed to DC-DC interactions. Although increases in surface MHC II levels occurred under all culture conditions tested, the increase in expression of CD40, CD80 and CD86 was much less under culture conditions where such interactions were minimised. DC-to-DC contact under the artificial conditions of high DC concentration in culture induced the production of soluble factors and these, in turn, induced the up-regulation of co-stimulatory molecules on the DC surface.
Resumo:
Objective: Cultured autologous epidermal stem cells are used to treat extensively burned patients. However, engraftment is variable and it is fundamental to know 1- how many stem cells survive the stress of transplantation and 2- how many stem cells are needed for long-term self-renewal of the regenerated epidermis. Therefore, we have recapitulated the transplantation of autologous cultured epidermal stem cells in the minipig to investigate the cellular and molecular mechanisms involved in engraftment. Methods: Pig keratinocytes were cultivated according to the protocol used in human epidermal cell therapy. Human surgical procedures were adapted to the pig. Engraftment was evaluated clinically and by histology. The presence of epidermal stem cells was evaluated by clonal analysis. The presence of dividing or apoptotic cells was revealed by Ki67 and cleaved-caspase3 immunostaining respectively. Results: The skin of the pig closely resembles human skin and contains clonogenic keratinocytes that can be serially cultivated, cloned or transduced with a gene encoding GFP (Green Fluorescent Protein) by means of recombinant retroviral vectors. Cultured epidermal autografts can be successfully transplanted and their behavior recapitulate our observations in the human. Our experiments confirm that the number of epidermal stem cells rapidly decreases following transplantation. Most importantly, the regenerated epithelium contains dividing cells but little apoptotic cells, thus indicating that transplanted stem cells are pushed toward differentiation in response to the transplantation procedure. Conclusions: The minipig model is extremely useful to investigate stem cell fate during transplantation in human. Understanding engraftment is crucial to improve cell therapy and to design a more efficient generation of epidermal stem cell based products.
Resumo:
The development of psoriatic plaques is T cell dependent. Recently, Th17 CD4 T cells have been proposed to be the main effector cells. However, development of psoriasis is critically dependent on accumulation of epidermal T cells, among the majority express CD8. Here we show that numbers of epidermal CD8 T cells correlated with development of psoriasis in human biopsies, and that blockade of CD8 T cells by depleting antibodies inhibited development of psoriasis in the AGR xenotransplantation mouse model. In human dermis, both CD4 and CD8 T cell numbers correlated significantly with epidermal pathology, indicating a role for dermal CD4 T cells in orchestrating the development of psoriasiform changes induced by epidermis-infiltrating CD8 T cells.
Resumo:
Thymic dendritic cells (DCs) form a discrete subset of bone marrow (BM)-derived cells, the function of which is to mediate negative selection of autoreactive thymocytes. The developmental origin of thymic DCs remains controversial. Although cell transfer studies support a model in which T cells and thymic DCs develop from the same intrathymic pluripotential precursor, it remains possible that these two types of cells develop from independent intrathymic precursors. Notch proteins are cell surface receptors involved in the regulation of cell fate specification. We have recently reported that T cell development in inducible Notch1-deficient mice is severely impaired at an early stage, before the expression of T cell lineage markers. To investigate whether development of thymic DCs also depends on Notch1, we have constructed mixed BM chimeric mice. We report here that thymic DC development from Notch1(-/)- BM precursors is absolutely normal (in terms of absolute number and phenotype) in this competitive situation, despite the absence of Notch1(-/)- T cells. Furthermore, we find that peripheral DCs and Langerhans cells are also not affected by Notch1 deficiency. Our results demonstrate that the development of DCs is totally independent of Notch1 function, and strongly suggest a dissociation between intrathymic T cell and DC precursors.
Resumo:
Human skin copes with harmful environmental factors that are circadian in nature, yet how circadian rhythms modulate the function of human epidermal stem cells is mostly unknown. Here we show that in human epidermal stem cells and their differentiated counterparts, core clock genes peak in a successive and phased manner, establishing distinct temporal intervals during the 24 hr day period. Each of these successive clock waves is associated with a peak in the expression of subsets of transcripts that temporally segregate the predisposition of epidermal stem cells to respond to cues that regulate their proliferation or differentiation, such as TGFβ and calcium. Accordingly, circadian arrhythmia profoundly affects stem cell function in culture and in vivo. We hypothesize that this intricate mechanism ensures homeostasis by providing epidermal stem cells with environmentally relevant temporal functional cues during the course of the day and that its perturbation may contribute to aging and carcinogenesis.
Resumo:
Until now it was thought that the retrovirus mouse mammary tumor virus preferentially infects B cells, which thereafter proliferate and differentiate due to superantigen-mediated T cell help. We describe in this study that dendritic cells are infectable at levels comparable to B cells in the first days after virus injection. Moreover, IgM knockout mice have chronically deleted superantigen-reactive T cells after MMTV injection, indicating that superantigen presentation by dendritic cells is sufficient for T cell deletion. In both subsets initially only few cells were infected, but there was an exponential increase in numbers of infected B cells due to superantigen-mediated T cell help, explaining that at the peak of the response infection is almost exclusively found in B cells. The level of infection in vivo was below 1 in 1000 dendritic cells or B cells. Infection levels in freshly isolated dendritic cells from spleen, Langerhans cells from skin, or bone marrow-derived dendritic cells were compared in an in vitro infection assay. Immature dendritic cells such as Langerhans cells or bone marrow-derived dendritic cells were infected 10- to 30-fold more efficiently than mature splenic dendritic cells. Bone marrow-derived dendritic cells carrying an endogenous mouse mammary tumor virus superantigen were highly efficient at inducing a superantigen response in vivo. These results highlight the importance of professional APC and efficient T cell priming for the establishment of a persistent infection by mouse mammary tumor virus.
Resumo:
There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.
Resumo:
Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8α conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 1-2 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions.
Resumo:
Mouse models of Leishmania major infection have shown that a predominant CD4(+) T helper type 1 cell (Th1) response leads to protection, while T helper type 2 cell (Th2) predominance confers susceptibility. Dendritic cells (DCs) are antigen-presenting cells that orchestrate the T cell response. The immune response to L. major involves direct antigen presentation by migrating DCs or transfer of antigens to resident DCs to prime T cells. In this review, we discuss the timing and consequences of antigen presentation by DC subsets and how this affects Leishmania susceptibility. We propose a model where dermal DCs and Langerhans cells play a role early in infection, followed by inflammatory monocyte-derived DC and lymph node (LN)-resident DCs at later time points of infection to establish the resistant Th1 response.