31 resultados para Collaborative learning flow pattern

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: An elevated early (E) to late (A) diastolic filling velocities ratio, typically seen in advanced diastolic dysfunction, has also been observed after cardioversion of atrial fibrillation as a consequence of the depressed left atrial (LA) contractility. We hypothesized that the impaired LA contractile function demonstrated after orthotopic cardiac transplantation (OCT) could also lead to this "pseudorestrictive" pattern. METHOD: E/A ratio related to the tissue Doppler early mitral annular velocity (Ea) as preload-independent index of LV relaxation was evaluated in all consecutive OCT patients between 2005 and 2007. RESULTS: The study population comprised 48 patients 97 ± 77 months after OCT. Thirty-two patients (67%) had an E/A ratio > 2. LV systolic function and myocardial relaxation assessed by the Ea velocity were similar compared to patients with normal ratio (61 ± 6% vs. 60 ± 12%, P = 0.854 and 15 ± 4 cm/s vs. 14 ± 3 cm/s, r = 0.15, P = 0.323, respectively). On the other hand, the proportion of the recipient and donor LA cuffs as estimated by the recipient/global LA area ratio and the LA emptying fraction significantly correlated with the E/A ratio (r = 0.40, P = 0.005 and r =-0.33, P = 0.022, respectively). CONCLUSION: Our study shows that there is a high prevalence of elevated E/A ratio after standard OCT which seems mainly related to reduced LA contractility. Recognition of this "pseudorestrictive" pattern may avoid misdiagnosis of diastolic dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow structures above vegetation canopies have received much attention within terrestrial and aquatic literature. This research has led to a good process understanding of mean and turbulent canopy flow structure. However, much of this research has focused on rigid or semi-rigid vegetation with relatively simple morphology. Aquatic macrophytes differ from this form, exhibiting more complex morphologies, predominantly horizontal posture in the flow and a different force balance. While some recent studies have investigated such canopies, there is still the need to examine the relevance and applicability of general canopy layer theory to these types of vegetation. Here, we report on a range of numerical experiments, using both semi-rigid and highly flexible canopies. The results for the semi-rigid canopies support existing canopy layer theory. However, for the highly flexible vegetation, the flow pattern is much more complex and suggests that a new canopy model may be required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two independent data sets. From Mayo Clinic, 73 probable AD patients and 91 cognitively normal (CN) controls completed the Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), and Auditory Verbal Learning Test (AVLT) within 3months of their scan. Baseline MRI's from the Alzheimer's disease Neuroimaging Initiative (ADNI) comprised the other data set; 113 AD, 351 MCI, and 122 CN subjects completed the MMSE and Alzheimer's Disease Assessment Scale-Cognitive subtest (ADAS-cog) and 39 AD, 92 MCI, and 32 CN ADNI subjects completed MMSE, ADAS-cog, and AVLT. Predicted and actual clinical scores were highly correlated for the MMSE, DRS, and ADAS-cog tests (P<0.0001). Training with one data set and testing with another demonstrated stability between data sets. DRS, MMSE, and ADAS-Cog correlated better than AVLT with whole brain grey matter changes associated with AD. This result underscores their utility for screening and tracking disease. RVR offers a novel way to measure interactions between structural changes and neuropsychological tests beyond that of univariate methods. In clinical practice, we envision using RVR to aid in diagnosis and predict clinical outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Article Title: Reduced Atrial Emptying after Orthotopic Heart Transplantation Masquerading as Restrictive Transmitral Doppler Flow Pattern? (Echocardiography 2011;28:167).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTERMED training implies a three week course, integrated in the "primary care module" for medical students in the first master year at the school of medicine in Lausanne. INTERMED uses an innovative teaching method based on repetitive sequences of e-learning-based individual learning followed by collaborative learning activities in teams, named Team-based learning (TBL). The e-learning takes place in a web-based virtual learning environment using a series of interactive multimedia virtual patients. By using INTERMED students go through a complete medical encounter applying clinical reasoning and choosing the diagnostic and therapeutic approach. INTERMED offers an authentic experience in an engaging and safe environment where errors are allowed and without consequences.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensory neuronopathies (SNNs) encompass paraneoplastic, infectious, dysimmune, toxic, inherited, and idiopathic disorders. Recently described diagnostic criteria allow SNN to be differentiated from other forms of sensory neuropathy, but there is no validated strategy based on routine clinical investigations for the etiological diagnosis of SNN. In a multicenter study, the clinical, biological, and electrophysiological characteristics of 148 patients with SNN were analyzed. Multiple correspondence analysis and logistic regression were used to identify patterns differentiating between forms of SNNs with different etiologies. Models were constructed using a study population of 88 patients and checked using a test population of 60 cases. Four patterns were identified. Pattern A, with an acute or subacute onset in the four limbs or arms, early pain, and frequently affecting males over 60 years of age, identified mainly paraneoplastic, toxic, and infectious SNN. Pattern B identified patients with progressive SNN and was divided into patterns C and D, the former corresponding to patients with inherited or slowly progressive idiopathic SNN with severe ataxia and electrophysiological abnormalities and the latter to patients with idiopathic, dysimmune, and sometimes paraneoplastic SNN with a more rapid course than in pattern C. The diagnostic strategy based on these patterns correctly identified 84/88 and 58/60 patients in the study and test populations, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A form of education called Interprofessional Education (IPE) occurs when two or more professions learn with, from and about each other. The purpose of IPE is to improve collaboration and the quality of care. Today, IPE is considered as a key educational approach for students in the health professions. IPE is highly effective when delivered in active patient care, such as in clinical placements. General internal medicine (GIM) is a core discipline where hospital-based clinical placements are mandatory for students in many health professions. However, few interprofessional (IP) clinical placements in GIM have been implemented. We designed such a placement. Placement design: The placement took place in the Department of Internal Medicine at the CHUV. It involved students from nursing, physiotherapy and medicine. The students were in their last year before graduation. Students formed teams consisting of one student from each profession. Each team worked in the same unit and had to take care of the same patient. The placement lasted three weeks. It included formal IP sessions, the most important being facilitated discussions or "briefings" (3x/w) during which the students discussed patient care and management. Four teams of students eventually took part in this project. Method: We performed a type of evaluation research called formative evaluation. This aimed at (1) understanding the educational experience and (2) assessing the impact of the placement on student learning. We collected quantitative data with pre-post clerkship questionnaires. We also collected qualitative data with two Focus Groups (FG) discussions at the end of the placement. The FG were audiotaped and transcribed. A thematic analysis was then performed. Results: We focused on the qualitative data, since the quantitative data lacked of statistical power due to the small numbers of students (N = 11). Five themes emerged from the FG analysis: (1) Learning of others' roles, (2) Learning collaborative competences, (3) Striking a balance between acquiring one's own professional competences and interprofessional competences, (4) Barriers to apply learnt IP competences in the future and (5) Advantages and disadvantages of IP briefings. Conclusions: Our IP clinical placement in GIM appeared to help students learn other professionals' roles and collaborative skills. Some challenges (e.g. finding the same patient for each team) were identified and will require adjustments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Animal societies are diverse, ranging from small family-based groups to extraordinarily large social networks in which many unrelated individuals interact. At the extreme of this continuum, some ant species form unicolonial populations in which workers and queens can move among multiple interconnected nests without eliciting aggression. Although unicoloniality has been mostly studied in invasive ants, it also occurs in some native non-invasive species. Unicoloniality is commonly associated with very high queen number, which may result in levels of relatedness among nestmates being so low as to raise the question of the maintenance of altruism by kin selection in such systems. However, the actual relatedness among cooperating individuals critically depends on effective dispersal and the ensuing pattern of genetic structuring. In order to better understand the evolution of unicoloniality in native non-invasive ants, we investigated the fine-scale population genetic structure and gene flow in three unicolonial populations of the wood ant F. paralugubris. RESULTS: The analysis of geo-referenced microsatellite genotypes and mitochondrial haplotypes revealed the presence of cryptic clusters of genetically-differentiated nests in the three populations of F. paralugubris. Because of this spatial genetic heterogeneity, members of the same clusters were moderately but significantly related. The comparison of nuclear (microsatellite) and mitochondrial differentiation indicated that effective gene flow was male-biased in all populations. CONCLUSION: The three unicolonial populations exhibited male-biased and mostly local gene flow. The high number of queens per nest, exchanges among neighbouring nests and restricted long-distance gene flow resulted in large clusters of genetically similar nests. The positive relatedness among clustermates suggests that kin selection may still contribute to the maintenance of altruism in unicolonial populations if competition occurs among clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The age-dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life-history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: "infants" using IL or oblique SL, "juveniles" implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.