114 resultados para Cancer cell migration

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional roles for the cancer cell-associated membrane type I matrix metalloproteinase (MT1-MMP) during early steps of the metastatic cascade in primary tumors remain unresolved. In an effort to determine its significance, we determined the in vivo effects of RNAi-mediated downregulation in mammary cancer cells on the migration, blood and lymphatic vessel invasion (LVI), and lymph node and lung metastasis. We also correlated the expression of cancer cell MT1-MMP with blood vessel invasion (BVI) in 102 breast cancer biopsies. MT1-MMP downregulation in cancer cells decreased lung metastasis without affecting primary tumor growth. The inhibition of lung metastasis correlated with reduced cancer cell migration and BVI. Furthermore, cancer cell-expressed MT1-MMP upregulated the expression of MT1-MMP in vascular endothelial cells, but did not affect MT1-MMP expression in lymphatic endothelial cells, LVI, or lymph node metastasis. Of clinical importance, we observed that elevated MT1-MMP expression correlated with BVI in biopsies from triple-negative breast cancers (TNBC), which have a poor prognosis and high incidence of distant metastasis, relative to other breast cancer subtypes. Together, our findings established that MT1-MMP activity in breast tumors is essential for BVI, but not LVI, and that MT1-MMP should be further explored as a predictor and therapeutic target of hematogenous metastasis in TNBC patients. Cancer Res; 71(13); 4527-38. ©2011 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TAT-RasGAP317-326, a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP317-326. In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP317-326 to promote cell adherence and inhibit migration. These results show that TAT-RasGAP317-326, besides its ability to favor tumor cell death, hampers cell migration and invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stroma mediated wound healing signals may share similarities with the ones produced by tumor's microenvironment and their modulation may impact tumor response to the various anti-cancer treatments including radiation therapy. Therefore we conducted this study, to assess the crosstalk between stromal and carcinoma cells in response to radiotherapy by genetic modulation of the stroma and irradiation. We found that fibroblasts irrespective of their RhoB status do not modulate intrinsic radiosensitivity of TC-1 but produce diffusible factors able to modify tumor cell fate. Then we found that Wt and RhoB deficient fibroblasts stimulated TC-1 migration through distinct mechanisms which are TGF-β1 and MMP-mediated respectively. Lastly, we found that simultaneous irradiation of fibroblasts and TC-1 abrogated the pro-migratory phenotype by repression of TGF-β and MMP secretion. This last result is highly relevant to the clinical situation and suggests that conversely to, the current view; irradiated stroma would not enhance carcinoma migration and could be manipulated to promote anti-tumor immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression signatures are used in the clinic as prognostic tools to determine the risk of individual patients with localized breast tumors developing distant metastasis. We lack a clear understanding, however, of whether these correlative biomarkers link to a common biological network that regulates metastasis. We find that the c-MYC oncoprotein coordinately regulates the expression of 13 different "poor-outcome" cancer signatures. In addition, functional inactivation of MYC in human breast cancer cells specifically inhibits distant metastasis in vivo and invasive behavior in vitro of these cells. These results suggest that MYC oncogene activity (as marked by "poor-prognosis" signature expression) may be necessary for the translocation of poor-outcome human breast tumors to distant sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of a hybrid gene formed by the promoter region of the Xenopus laevis vitellogenin gene B1 and the CAT coding region is regulated by estrogen when the gene is transfected into hormone-responsive MCF-7 cells. Furthermore, the 5' flanking region of the gene B1 alone can confer inducibility to heterologous promoters, although to a varying extent depending on the promoter used. Deletion mapping of he vitellogenin hormone-responsive sequences revealed that a 13 bp element 5'-AGTCACTGTGACC-3' at position -334 is essential for estrogen inducibility. We have shown previously that this 13 bp element is present upstream of several liver-specific estrogen-inducible genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell-mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN-related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two hybrid compounds comprising an antimetastatic ruthenium-arene fragment tethered to an indazole-3-carboxylic acid derivative that inhibits aerobic glycolysis in cancer cells have been prepared and evaluated in a variety of cancer cell lines, including highly relevant human glioblastoma cells, with an apparent synergistic action between the two components observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H: quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy.