47 resultados para Arts Assessment, Dance, ePortfolio, Digital Portfolios, Authentic Learning

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many European countries, image quality for digital x-ray systems used in screening mammography is currently specified using a threshold-detail detectability method. This is a two-part study that proposes an alternative method based on calculated detectability for a model observer: the first part of the work presents a characterization of the systems. Eleven digital mammography systems were included in the study; four computed radiography (CR) systems, and a group of seven digital radiography (DR) detectors, composed of three amorphous selenium-based detectors, three caesium iodide scintillator systems and a silicon wafer-based photon counting system. The technical parameters assessed included the system response curve, detector uniformity error, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). Approximate quantum noise limited exposure range was examined using a separation of noise sources based upon standard deviation. Noise separation showed that electronic noise was the dominant noise at low detector air kerma for three systems; the remaining systems showed quantum noise limited behaviour between 12.5 and 380 µGy. Greater variation in detector MTF was found for the DR group compared to the CR systems; MTF at 5 mm(-1) varied from 0.08 to 0.23 for the CR detectors against a range of 0.16-0.64 for the DR units. The needle CR detector had a higher MTF, lower NNPS and higher DQE at 5 mm(-1) than the powder CR phosphors. DQE at 5 mm(-1) ranged from 0.02 to 0.20 for the CR systems, while DQE at 5 mm(-1) for the DR group ranged from 0.04 to 0.41, indicating higher DQE for the DR detectors and needle CR system than for the powder CR phosphor systems. The technical evaluation section of the study showed that the digital mammography systems were well set up and exhibiting typical performance for the detector technology employed in the respective systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this work is to develop a method to objectively compare the performance of a digital and a screen-film mammography system in terms of image quality. The method takes into account the dynamic range of the image detector, the detection of high and low contrast structures, the visualisation of the images and the observer response. A test object, designed to represent a compressed breast, was constructed from various tissue equivalent materials ranging from purely adipose to purely glandular composition. Different areas within the test object permitted the evaluation of low and high contrast detection, spatial resolution and image noise. All the images (digital and conventional) were captured using a CCD camera to include the visualisation process in the image quality assessment. A mathematical model observer (non-prewhitening matched filter), that calculates the detectability of high and low contrast structures using spatial resolution, noise and contrast, was used to compare the two technologies. Our results show that for a given patient dose, the detection of high and low contrast structures is significantly better for the digital system than for the conventional screen-film system studied. The method of using a test object with a large tissue composition range combined with a camera to compare conventional and digital imaging modalities can be applied to other radiological imaging techniques. In particular it could be used to optimise the process of radiographic reading of soft copy images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assessment of image quality for digital x-ray mammography systems used in European screening programs relies mainly on contrast-detail CDMAM phantom scoring and requires the acquisition and analysis of many images in order to reduce variability in threshold detectability. Part II of this study proposes an alternative method based on the detectability index (d') calculated for a non-prewhitened model observer with an eye filter (NPWE). The detectability index was calculated from the normalized noise power spectrum and image contrast, both measured from an image of a 5 cm poly(methyl methacrylate) phantom containing a 0.2 mm thick aluminium square, and the pre-sampling modulation transfer function. This was performed as a function of air kerma at the detector for 11 different digital mammography systems. These calculated d' values were compared against threshold gold thickness (T) results measured with the CDMAM test object and against derived theoretical relationships. A simple relationship was found between T and d', as a function of detector air kerma; a linear relationship was found between d' and contrast-to-noise ratio. The values of threshold thickness used to specify acceptable performance in the European Guidelines for 0.10 and 0.25 mm diameter discs were equivalent to threshold calculated detectability indices of 1.05 and 6.30, respectively. The NPWE method is a validated alternative to CDMAM scoring for use in the image quality specification, quality control and optimization of digital x-ray systems for screening mammography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper aims to present an ePortfolio project led for two years in a multilingual and interdisciplinary Master's program in public discourse and communication analysis offered by the Faculty of Arts of the University of Lausanne (Switzerland). Globally, the project - named Learn to communicate skills - offers a reflection about academic skills and their transferability to the professional world. More precisely, the aim of the project is to make students aware of the importance of reflexive learning to make their skills transferable to other contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computerized handheld procedure is presented in this paper. It is intended as a database complementary tool, to enhance prospective risk analysis in the field of occupational health. The Pendragon forms software (version 3.2) has been used to implement acquisition procedures on Personal Digital Assistants (PDAs) and to transfer data to a computer in an MS-Access format. The data acquisition strategy proposed relies on the risk assessment method practiced at the Institute of Occupational Health Sciences (IST). It involves the use of a systematic hazard list and semi-quantitative risk assessment scales. A set of 7 modular forms has been developed to cover the basic need of field audits. Despite the minor drawbacks observed, the results obtained so far show that handhelds are adequate to support field risk assessment and follow-up activities. Further improvements must still be made in order to increase the tool effectiveness and field adequacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fall prevention in elderly subjects is often based on training and rehabilitation programs that include mostly traditional balance and strength exercises. By applying such conventional interventions to improve gait performance and decrease fall risk, some important factors are neglected such as the dynamics of the gait and the motor learning processes. The EU project "Self Mobility Improvement in the eLderly by counteractING falls" (SMILING project) aimed to improve age-related gait and balance performance by using unpredicted external perturbations during walking through motorized shoes that change insole inclination at each stance. This paper describes the shoe-worn inertial module and the gait analysis method needed to control in real-time the shoe insole inclination during training, as well as gait spatio-temporal parameters obtained during long distance walking before and after the 8-week training program that assessed the efficacy of training with these motorized shoes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Dynamic high-field magnetic resonance (MR) defecography including the evacuation phase is a promising tool for the assessment of functional pelvic disorders, nowadays seen with increasing frequency in elderly women in particular. Learning objectives: 1. To describe the adequate technique of dynamic high-field MRI (3T) in assessing pelvic floor disorders. 2. To provide an overview of the most common pathologies occurring during the evacuation phase, especially in comparison with results of conventional defecography. Methods and materials: After description of the ideal technical parameters of MR defecography performed in supine position after gel rectal filling with a 3 Tesla unit and including the evacuation phase we stress the importance of using a standardized evaluation system for the exact assessment of pelvic floor pathophysiology. Results: The typical pelvic floor disorders occurring before and/or during the evacuation phase, such as sphincter insufficiency, vaginal vault and/or uterine prolapse, cystourethrocele, peritoneo-/ entero-/ sigmoïdocele or rectal prolapse, are demonstrated. The difference between the terms "pelvic floor descent" and "pelvic floor relaxation" are pictorially outlined. MR results are compared with these of conventional defecography. Conclusion: Exact knowledge about the correct technique including the evacuation phase and the use of a standardized evaluation system in assessing pelvic floor disorders by dynamic high-field MRI is mandatory for accurate and reproducible diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.