186 resultados para EFFICIENT ESTIMATION
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
Silene dioica is a diploid, dioecious, perennial, insect-pollinated herb and part of the deciduous phase of primary succession in Skeppsvik Archipelago, Gulf of Bothnia, Sweden. These islands are composed of material deposited and left underwater by melting ice at the end of the last ice age. A rapid and relatively constant rate of land uplift of 0.9 cm per year continually creates new islands available for colonization by plants. Because the higher deposits appear first, islands differ in age. Because it is possible to estimate the ages of islands and populations of plant species belonging to early stages of succession, the genetic dynamics occurring within an age-structured metapopulation can be investigated in this archipelago. Fifty-two island populations of S. dioica of known ages, sizes, and distances from each other were studied through electrophoretic data. A number of factors increase the degree of genetic differentiation among these island populations relative to an island model at equilibrium. Newly founded populations were more differentiated than those of intermediate age, which suggests that colonization dynamics increase genetic variance among populations. The very old populations, which decrease in size as they approach extinction, were more differentiated than intermediate-aged populations. Isolation by distance occurs in this system. Colonizers are likely to come from more than one source, and the migrant pool model best explains colonization events in the archipelago. Degree of environmental exposure also affects population differentiation.
Resumo:
Two cationic octanuclear metalla-cubes [Ru(8)(η(6)-C(6)H(5)Me)(8)(tpp-H2)(2)(dhbq)(4)](8+) and [Ru(8)(η(6)-p-iPrC(6)H(4)Me)(8)(tpp-H2)(2)(dhbq)(4)](8+) were prepared and evaluated as dual photosensitizers and chemotherapeutics in cancer cells. In the dark, the complexes presented high cytotoxicity towards only melanoma and ovarian cancer cells. However, the complexes exhibited good phototoxicities toward all cancer cells (1μM concentration, LD(50)=2-7J/cm(2)), thus suggesting a dual synergistic effect with good properties of both the arene ruthenium chemotherapeutics and the porphyrin photosensitizers.
Resumo:
BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. OBJECTIVE: The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. METHODS AND RESULTS: The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte.
Resumo:
BACKGROUND: Expression of heterologous genes in mammalian cells or organisms for therapeutic or experimental purposes often requires tight control of transgene expression. Specifically, the following criteria should be met: no background gene activity in the off-state, high gene expression in the on-state, regulated expression over an extended period, and multiple switching between on- and off-states. METHODS: Here, we describe a genetic switch system for controlled transgene transcription using chimeric repressor and activator proteins functioning in a novel regulatory network. In the off-state, the target transgene is actively silenced by a chimeric protein consisting of multimerized eukaryotic transcriptional repression domains fused to the DNA-binding tetracycline repressor. In the on-state, the inducer drug doxycycline affects both the derepression of the target gene promoter and activation by the GAL4-VP16 transactivator, which in turn is under the control of an autoregulatory feedback loop. RESULTS: The hallmark of this new system is the efficient transgene silencing in the off-state, as demonstrated by the tightly controlled expression of the highly cytotoxic diphtheria toxin A gene. Addition of the inducer drug allows robust activation of transgene expression. In stably transfected cells, this control is still observed after months of repeated cycling between the repressed and activated states of the target genes. CONCLUSIONS: This system permits tight long-term regulation when stably introduced into cell lines. The underlying principles of this network system should have general applications in biotechnology and gene therapy.
Resumo:
The aim of this study was to evaluate the forensic protocol recently developed by Qiagen for the QIAsymphony automated DNA extraction platform. Samples containing low amounts of DNA were specifically considered, since they represent the majority of samples processed in our laboratory. The analysis of simulated blood and saliva traces showed that the highest DNA yields were obtained with the maximal elution volume available for the forensic protocol, that is 200 ml. Resulting DNA extracts were too diluted for successful DNA profiling and required a concentration. This additional step is time consuming and potentially increases inversion and contamination risks. The 200 ml DNA extracts were concentrated to 25 ml, and the DNA recovery estimated with real-time PCR as well as with the percentage of SGM Plus alleles detected. Results using our manual protocol, based on the QIAamp DNA mini kit, and the automated protocol were comparable. Further tests will be conducted to determine more precisely DNA recovery, contamination risk and PCR inhibitors removal, once a definitive procedure, allowing the concentration of DNA extracts from low yield samples, will be available for the QIAsymphony.
Resumo:
BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. METHODS: DSS colitic mice were treated with daily pegylated GM-CSF or saline and clinical, histological, and inflammatory parameters were kinetically evaluated. Further, the role of bone marrow-derived cells in the impact of GM-CSF therapy on DSS colitis was addressed using cell transfers. RESULTS: GM-CSF therapy reduced clinical signs of colitis and the release of inflammatory mediators. GM-CSF therapy improved mucosal repair, with faster ulcer reepithelialization, accelerated hyperproliferative response of epithelial cells in ulcer-adjacent crypts, and lower colonoscopic ulceration scores in GM-CSF-administered mice relative to untreated mice. We observed that GM-CSF-induced promotion of mucosal repair is timely associated with a reduction in neutrophil numbers and increased accumulation of CD11b(+) monocytic cells in colon tissues. Importantly, transfer of splenic GM-CSF-induced CD11b(+) myeloid cells into DSS-exposed mice improved colitis, and lethally irradiated GM-CSF receptor-deficient mice reconstituted with wildtype bone marrow cells were protected from DSS-induced colitis upon GM-CSF therapy. Lastly, GM-CSF-induced CD11b(+) myeloid cells were shown to promote in vitro wound repair. CONCLUSIONS: Our study shows that GM-CSF-dependent stimulation of bone marrow-derived cells during DSS-induced colitis accelerates colonic tissue repair. These data provide a putative mechanism for the observed beneficial effects of GM-CSF therapy in Crohn's disease.
Resumo:
We present a Bayesian approach for estimating the relative frequencies of multi-single nucleotide polymorphism (SNP) haplotypes in populations of the malaria parasite Plasmodium falciparum by using microarray SNP data from human blood samples. Each sample comes from a malaria patient and contains one or several parasite clones that may genetically differ. Samples containing multiple parasite clones with different genetic markers pose a special challenge. The situation is comparable with a polyploid organism. The data from each blood sample indicates whether the parasites in the blood carry a mutant or a wildtype allele at various selected genomic positions. If both mutant and wildtype alleles are detected at a given position in a multiply infected sample, the data indicates the presence of both alleles, but the ratio is unknown. Thus, the data only partially reveals which specific combinations of genetic markers (i.e. haplotypes across the examined SNPs) occur in distinct parasite clones. In addition, SNP data may contain errors at non-negligible rates. We use a multinomial mixture model with partially missing observations to represent this data and a Markov chain Monte Carlo method to estimate the haplotype frequencies in a population. Our approach addresses both challenges, multiple infections and data errors.
Resumo:
The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.
Resumo:
In this paper we propose a highly accurate approximation procedure for ruin probabilities in the classical collective risk model, which is based on a quadrature/rational approximation procedure proposed in [2]. For a certain class of claim size distributions (which contains the completely monotone distributions) we give a theoretical justification for the method. We also show that under weaker assumptions on the claim size distribution, the method may still perform reasonably well in some cases. This in particular provides an efficient alternative to a related method proposed in [3]. A number of numerical illustrations for the performance of this procedure is provided for both completely monotone and other types of random variables.
Resumo:
Numerous sources of evidence point to the fact that heterogeneity within the Earth's deep crystalline crust is complex and hence may be best described through stochastic rather than deterministic approaches. As seismic reflection imaging arguably offers the best means of sampling deep crustal rocks in situ, much interest has been expressed in using such data to characterize the stochastic nature of crustal heterogeneity. Previous work on this problem has shown that the spatial statistics of seismic reflection data are indeed related to those of the underlying heterogeneous seismic velocity distribution. As of yet, however, the nature of this relationship has remained elusive due to the fact that most of the work was either strictly empirical or based on incorrect methodological approaches. Here, we introduce a conceptual model, based on the assumption of weak scattering, that allows us to quantitatively link the second-order statistics of a 2-D seismic velocity distribution with those of the corresponding processed and depth-migrated seismic reflection image. We then perform a sensitivity study in order to investigate what information regarding the stochastic model parameters describing crustal velocity heterogeneity might potentially be recovered from the statistics of a seismic reflection image using this model. Finally, we present a Monte Carlo inversion strategy to estimate these parameters and we show examples of its application at two different source frequencies and using two different sets of prior information. Our results indicate that the inverse problem is inherently non-unique and that many different combinations of the vertical and lateral correlation lengths describing the velocity heterogeneity can yield seismic images with the same 2-D autocorrelation structure. The ratio of all of these possible combinations of vertical and lateral correlation lengths, however, remains roughly constant which indicates that, without additional prior information, the aspect ratio is the only parameter describing the stochastic seismic velocity structure that can be reliably recovered.
Resumo:
The nutritional status of cystic fibrosis (CF) patients has to be regularly evaluated and alimentary support instituted when indicated. Bio-electrical impedance analysis (BIA) is a recent method for determining body composition. The present study evaluates its use in CF patients without any clinical sign of malnutrition. Thirty-nine patients with CF and 39 healthy subjects aged 6-24 years were studied. Body density and mid-arm muscle circumference were determined by anthropometry and skinfold measurements. Fat-free mass was calculated taking into account the body density. Muscle mass was obtained from the urinary creatinine excretion rate. The resistance index was calculated by dividing the square of the subject's height by the body impedance. We show that fat-free mass, mid-arm muscle circumference and muscle mass are each linearly correlated to the resistance index and that the regression equations are similar for both CF patients and healthy subjects.
Resumo:
PURPOSE: To derive a prediction rule by using prospectively obtained clinical and bone ultrasonographic (US) data to identify elderly women at risk for osteoporotic fractures. MATERIALS AND METHODS: The study was approved by the Swiss Ethics Committee. A prediction rule was computed by using data from a 3-year prospective multicenter study to assess the predictive value of heel-bone quantitative US in 6174 Swiss women aged 70-85 years. A quantitative US device to calculate the stiffness index at the heel was used. Baseline characteristics, known risk factors for osteoporosis and fall, and the quantitative US stiffness index were used to elaborate a predictive rule for osteoporotic fracture. Predictive values were determined by using a univariate Cox model and were adjusted with multivariate analysis. RESULTS: There were five risk factors for the incidence of osteoporotic fracture: older age (>75 years) (P < .001), low heel quantitative US stiffness index (<78%) (P < .001), history of fracture (P = .001), recent fall (P = .001), and a failed chair test (P = .029). The score points assigned to these risk factors were as follows: age, 2 (3 if age > 80 years); low quantitative US stiffness index, 5 (7.5 if stiffness index < 60%); history of fracture, 1; recent fall, 1.5; and failed chair test, 1. The cutoff value to obtain a high sensitivity (90%) was 4.5. With this cutoff, 1464 women were at lower risk (score, <4.5) and 4710 were at higher risk (score, >or=4.5) for fracture. Among the higher-risk women, 6.1% had an osteoporotic fracture, versus 1.8% of women at lower risk. Among the women who had a hip fracture, 90% were in the higher-risk group. CONCLUSION: A prediction rule obtained by using quantitative US stiffness index and four clinical risk factors helped discriminate, with high sensitivity, women at higher versus those at lower risk for osteoporotic fracture.
Resumo:
While the incidence of sleep disorders is continuously increasing in western societies, there is a clear demand for technologies to asses sleep-related parameters in ambulatory scenarios. The present study introduces a novel concept of accurate sensor to measure RR intervals via the analysis of photo-plethysmographic signals recorded at the wrist. In a cohort of 26 subjects undergoing full night polysomnography, the wrist device provided RR interval estimates in agreement with RR intervals as measured from standard electrocardiographic time series. The study showed an overall agreement between both approaches of 0.05 ± 18 ms. The novel wrist sensor opens the door towards a new generation of comfortable and easy-to-use sleep monitors.