138 resultados para reflection theory
Resumo:
Cannabis use among adolescents and young adults has become a major public health challenge. Several European countries are currently developing short screening instruments to identify 'problematic' forms of cannabis use in general population surveys. One such instrument is the Cannabis Use Disorders Identification Test (CUDIT), a 10-item questionnaire based on the Alcohol Use Disorders Identification Test. Previous research found that some CUDIT items did not perform well psychometrically. In the interests of improving the psychometric properties of the CUDIT, this study replaces the poorly performing items with new items that specifically address cannabis use. Analyses are based on a sub-sample of 558 recent cannabis users from a representative population sample of 5722 individuals (aged 13-32) who were surveyed in the 2007 Swiss Cannabis Monitoring Study. Four new items were added to the original CUDIT. Psychometric properties of all 14 items, as well as the dimensionality of the supplemented CUDIT were then examined using Item Response Theory. Results indicate the unidimensionality of CUDIT and an improvement in its psychometric performance when three original items (usual hours being stoned; injuries; guilt) are replaced by new ones (motives for using cannabis; missing out leisure time activities; difficulties at work/school). However, improvements were limited to cannabis users with a high problem score. For epidemiological purposes, any further revision of CUDIT should therefore include a greater number of 'easier' items.
Resumo:
Intuitively, we think of perception as providing us with direct cognitive access to physical objects and their properties. But this common sense picture of perception becomes problematic when we notice that perception is not always veridical. In fact, reflection on illusions and hallucinations seems to indicate that perception cannot be what it intuitively appears to be. This clash between intuition and reflection is what generates the puzzle of perception. The task and enterprise of unravelling this puzzle took, and still takes, centre stage in the philosophy of perception. The goal of my dissertation is to make a contribution to this enterprise by formulating and defending a new structural approach to perception and perceptual consciousness. The argument for my structural approach is developed in several steps. Firstly, I develop an empirically inspired causal argument against naïve and direct realist conceptions of perceptual consciousness. Basically, the argument says that perception and hallucination can have the same proximal causes and must thus belong to the same mental kind. I emphasise that this insight gives us good reasons to abandon what we are instinctively driven to believe - namely that perception is directly about the outside physical world. The causal argument essentially highlights that the information that the subject acquires in perceiving a worldly object is always indirect. To put it another way, the argument shows that what we, as perceivers, are immediately aware of, is not an aspect of the world but an aspect of our sensory response to it. A view like this is traditionally known as a Representative Theory of Perception. As a second step, emphasis is put on the task of defending and promoting a new structural version of the Representative Theory of Perception; one that is immune to some major objections that have been standardly levelled at other Representative Theories of Perception. As part of this defence and promotion, I argue that it is only the structural features of perceptual experiences that are fit to represent the empirical world. This line of thought is backed up by a detailed study of the intriguing phenomenon of synaesthesia. More precisely, I concentrate on empirical cases of synaesthetic experiences and argue that some of them provide support for a structural approach to perception. The general picture that emerges in this dissertation is a new perspective on perceptual consciousness that is structural through and through.
Resumo:
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.
Resumo:
This article builds on the recent policy diffusion literature and attempts to overcome one of its major problems, namely the lack of a coherent theoretical framework. The literature defines policy diffusion as a process where policy choices are interdependent, and identifies several diffusion mechanisms that specify the link between the policy choices of the various actors. As these mechanisms are grounded in different theories, theoretical accounts of diffusion currently have little internal coherence. In this article we put forward an expected-utility model of policy change that is able to subsume all the diffusion mechanisms. We argue that the expected utility of a policy depends on both its effectiveness and the payoffs it yields, and we show that the various diffusion mechanisms operate by altering these two parameters. Each mechanism affects one of the two parameters, and does so in distinct ways. To account for aggregate patterns of diffusion, we embed our model in a simple threshold model of diffusion. Given the high complexity of the process that results, strong analytical conclusions on aggregate patterns cannot be drawn without more extensive analysis which is beyond the scope of this article. However, preliminary considerations indicate that a wide range of diffusion processes may exist and that convergence is only one possible outcome.
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
Investigations of solute transport in fractured rock aquifers often rely on tracer test data acquired at a limited number of observation points. Such data do not, by themselves, allow detailed assessments of the spreading of the injected tracer plume. To better understand the transport behavior in a granitic aquifer, we combine tracer test data with single-hole ground-penetrating radar (GPR) reflection monitoring data. Five successful tracer tests were performed under various experimental conditions between two boreholes 6 m apart. For each experiment, saline tracer was injected into a previously identified packed-off transmissive fracture while repeatedly acquiring single-hole GPR reflection profiles together with electrical conductivity logs in the pumping borehole. By analyzing depth-migrated GPR difference images together with tracer breakthrough curves and associated simplified flow and transport modeling, we estimate (1) the number, the connectivity, and the geometry of fractures that contribute to tracer transport, (2) the velocity and the mass of tracer that was carried along each flow path, and (3) the effective transport parameters of the identified flow paths. We find a qualitative agreement when comparing the time evolution of GPR reflectivity strengths at strategic locations in the formation with those arising from simulated transport. The discrepancies are on the same order as those between observed and simulated breakthrough curves at the outflow locations. The rather subtle and repeatable GPR signals provide useful and complementary information to tracer test data acquired at the outflow locations and may help us to characterize transport phenomena in fractured rock aquifers.
Resumo:
Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Nowak et al. argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.
Resumo:
The objective of this paper is to discuss whether children have a capacity for deonticreasoning that is irreducible to mentalizing. The results of two experiments point tothe existence of such non-mentalistic understanding and prediction of the behaviourof others. In Study 1, young children (3- and 4-year-olds) were told different versionsof classic false-belief tasks, some of which were modified by the introduction of a ruleor a regularity. When the task (a standard change of location task) included a rule, theperformance of 3-year-olds, who fail traditional false-belief tasks, significantly improved.In Study 2, 3-year-olds proved to be able to infer a rule from a social situation and touse it in order to predict the behaviour of a character involved in a modified versionof the false-belief task. These studies suggest that rules play a central role in the socialcognition of young children and that deontic reasoning might not necessarily involvemind reading.