88 resultados para Thermal degradation
Resumo:
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Resumo:
Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5
Resumo:
While developing a high-pressure liquid chromatography assay for cefepime in plasma, we observed significant drug degradation at 20 and 37 degrees C but not at 4 degrees C. This plasma-related degradation persisted after protein removal. This warrants caution regarding cefepime assays for pharmacokinetic and pharmacodynamic studies of cefepime in vitro and in vivo.
Resumo:
INTRODUCTION: Quantitative sensory testing (QST) is widely used in human research to investigate the integrity of the sensory function in patients with pain of neuropathic origin, or other causes such as low back pain. Reliability of QST has been evaluated on both sides of the face, hands and feet as well as on the trunk (Th3-L3). In order to apply these tests on other body-parts such as the lower lumbar spine, it is important first to establish reliability on healthy individuals. The aim of this study was to investigate intra-rater reliability of thermal QST in healthy adults, on two sites within the L5 dermatome of the lumbar spine and lower extremity. METHODS: Test-retest reliability of thermal QST was determined at the L5-level of the lumbar spine and in the same dermatome on the lower extremity in 30 healthy persons under 40 years of age. Results were analyzed using descriptive statistics and intraclass correlation coefficient (ICC). Values were compared to normative data, using Z-transformation. RESULTS: Mean intraindividual differences were small for cold and warm detection thresholds but larger for pain thresholds. ICC values showed excellent reliability for warm detection and heat pain threshold, good-to-excellent reliability for cold pain threshold and fair-to-excellent reliability for cold detection threshold. ICC had large ranges of confidence interval (95%). CONCLUSION: In healthy adults, thermal QST on the lumbar spine and lower extremity demonstrated fair-to-excellent test-retest reliability.
CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome.
Resumo:
Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing phenocopies CDK10 silencing in increasing c-Raf and in conferring tamoxifen resistance to breast cancer cells. CDK10/cyclin M phosphorylates ETS2 in vitro, and in cells it positively controls ETS2 degradation by the proteasome. ETS2 protein levels are increased in cells derived from a STAR patient, and this increase is attributable to decreased cyclin M levels. Altogether, our results reveal an additional regulatory mechanism for ETS2, which plays key roles in cancer and development. They also shed light on the molecular mechanisms underlying STAR syndrome.
Resumo:
Rate of metabolism and body temperature were studied between -6°C and 38°C in the common pipistrelle bat Pipistrellus pipistrellus (Vespertilionidae), a European species lying close to the lower end of the mammalian size range (body mass 4.9±0.8g, N=28). Individuals maintained only occasionally a normothermic body temperature averaging 35.4±1.1°C (N=4) and often showed torpor during metabolic runs. The thermoneutral zone was found above 33°C, and basal rate of metabolism averaged 7.6±0.8mL O(2)h(-1) (N=28), which is 69% of the value predicted on the basis of body mass. Minimal wet thermal conductance was 161% of the expected value. During torpor, the rate of metabolism was related exponentially to body temperature with a Q(10) value of 2.57. Torpid bats showed intermittent ventilation, with the frequency of ventilatory cycles increasing exponentially with body temperature. Basal rate of metabolism (BMR) varied significantly with season and body temperature, but not with body mass. It was lower before the hibernation period than during the summer. The patterns observed are generally consistent with those exhibited by other vespertilionids of temperate regions. However, divergences occur with previous measurements on European pipistrelles, and the causes of the seasonal variation in BMR, which has only rarely been searched for among vespertilionids, remain to be examined.
Resumo:
Atrial natriuretic peptide is cleared from plasma by clearance receptors and by enzymatic degradation by way of a neutral metalloendopeptidase. Inhibition of neutral metalloendopeptidase activity appears to provide an interesting approach to interfere with metabolism of atrial natriuretic peptide to enhance the renal and haemodynamic effects of endogenous atrial natriuretic peptide. In this study, the effects of SCH 34826, a new orally active neutral metalloendopeptidase inhibitor, have been evaluated in a single-blind, placebo-controlled study involving eight healthy volunteers who had maintained a high sodium intake for 5 days. SCH 34826 had no effect on blood pressure or heart rate in these normotensive subjects. SCH 34826 promoted significant increases in excretion of urinary sodium, phosphate, and calcium. The cumulative 5-hour urinary sodium excretion was 15.7 +/- 7.3 mmol for the placebo and 22.9 +/- 5, 26.7 +/- 6 (p less than 0.05), and 30.9 +/- 6.8 mmol (p less than 0.01) for the 400, 800, and 1600 mg SCH 34826 doses, respectively. During the same time interval, the cumulative urinary phosphate excretion increased by 0.3 +/- 0.4 mmol after placebo and by 1.5 +/- 0.3 (p less than 0.01), 1.95 +/- 0.3 (p less than 0.01), and 2.4 +/- 0.4 mmol (p less than 0.001) after 400, 800, and 1600 mg SCH 34826, respectively. There was no change in diuresis or excretion of urinary potassium and uric acid. The natriuretic response to SCH 34826 occurred in the absence of any change in plasma atrial natriuretic peptide levels but was associated with a dose-dependent elevation of urinary atrial natriuretic peptide and cyclic guanosine monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Strigolactones (SLs) are phytohormones that play a central role in regulating shoot branching. SL perception and signaling involves the F-box protein MAX2 and the hydrolase DWARF14 (D14), proposed to act as an SL receptor. We used strong loss-of-function alleles of the Arabidopsis thaliana D14 gene to characterize D14 function from early axillary bud development through to lateral shoot outgrowth and demonstrated a role of this gene in the control of flowering time. Our data show that D14 distribution in vivo overlaps with that reported for MAX2 at both the tissue and subcellular levels, allowing physical interactions between these proteins. Our grafting studies indicate that neither D14 mRNA nor the protein move over a long range upwards in the plant. Like MAX2, D14 is required locally in the aerial part of the plant to suppress shoot branching. We also identified a mechanism of SL-induced, MAX2-dependent proteasome-mediated degradation of D14. This negative feedback loop would cause a substantial drop in SL perception, which would effectively limit SL signaling duration and intensity.
Resumo:
SUMMARY : Phytochromes constitute a family of red/far-red photoreceptors regulating all the major transitions during the life cycle of plants. In Arabidopsis, five members: phyA,_ B, C, D and E, were identified. Phytochromes are synthesized in their inactive red-light absorbing form called Pr. Upon light absorbance they convert to the far-red light absorbing Pfr form. The Pfr form is the active conformer which converts back to the Pr form either rapidly upon far-red perception or in a slower process called dark reversion. ph~A represents an exception, in that it does not significantly dark-revert and two specific processes have been developed by the plants to decrease the amount of biologically active phyA. The first one is alight-dependent repression of the PHYA gene expression and the second one is alight-dependent degradation of the phyA protein. The latter is the most efficient process to rapidly decrease the level of active phyA. The ability of plants to regulate the amount of active phyA is critical in a far-red rich environment, a situation observed under a canopy. In these conditions, phyA is essential to induce the germination and the deetiolation of the young seedling. Later in the development the ability of phyA to repress growth counteracts the shade avoidance response. Therefore decreasing the amount of phyA allows stem growth and to compete with neighbours for the light. In this thesis, I investigate the light-dependent degradation of phyA. I developed a reverse genetic approach based on the systematic analysis of the light-dependent accumulation of phyA in the different cullin mutant cull, cul3a; cul3b and cul4. This analysis allowed me to show that CUL1 and CUL3A-based E3 ligase complexes are involved in the regulation of phyA degradation. Surprisingly, our results also demonstrate that cu14 is not affected in the degradation of phyA whereas constitutive Photomorphogenic 1 (COP1) a subunit of one CUL4based E3 complex was reported to be involved. Further investigations showed that the phenotype of cop1 is conditional, the mutant being defective in phyA degradation only in the presence of metabolisable sugars. I also showed that phyA is degraded by a proteasome-dependent mechanism both in the cytoplasm and in the nucleus using mutants and transgenic lines affected in the localization of phyA. Interestingly, I observed that phyA degradation was faster in the nucleus than in the cytosol and that rapid degradation of Pr also occurred in the nucleus suggesting that cytosolic accumulation of phyA in the dark is a way to regulate its proteolysis. Finally, we identify a short region similar to a PEST sequence required for phyA stability and we developed a unbiased genetic screen to identify new components involved in the regulation of the light-dependent degradation of phyA. The significance of these results are discussed. RESUME : Les phytochromes (phy) constituent une famille de photorécepteurs absorbant la lumière rouge et rouge lointaine et régulant toutes les étapes de transitions majeures dans la vie des plantes. Chez Arabidopsis, cinq membres : phyA, B, C, D et E ont été identifiés. Les phytochromes sont synthétisés sous une forme inactive appelée Pr absorbant la lumière rouge. Après perception de lumière ils passent sous une forme active Pfr absorbant dans le rouge lointain. La forme Pfr peut retourner sous la forme Pr après absorption de lumiëre rouge lointaine ou dans un processus lent appelé «réversion à l'obscurité ». phyA représente une exception à cette règle car il ne retoune pas significativement sous sa forme inactive dans le noir. Deux processus spécifiques ont donc été développés pour diminuer le taux de phyA actif. Le premier consiste en la répression du gène PHYA en condition de lumière et le second en une dégradation induite par la lumière de la protéine phyA. Ce dernier processus est le plus efficace pour diminuer rapidement le niveau de phyA. La capacité des plantes à réguler le taux de phyA actifs est critique dans un environnement riche en lumière rouge lointaine, une situation observée sous une canopée. Sous une canopée, phyA est essentiel pour induire la germination et la dé-étiolation de la jeune pousse. Plus tard dans le développement la capacité de phyA de réprimer la croissance freine la «réponse à l'évitement de l'ombre ». Par conséquent diminuer le taux de phyA permet la croissance de la tige et donc de rentrer en compétition pour la lumière avec les plantes avoisinantes. Dans cette thèse, j'ai étudié la dégradation de phyA. J'ai développé une approche génétique inverse basée sur l'analyse systématique de l'accumulation de phyA en condition de lumière dans les différents mutants cullin, cul1, cul3a, cul3b et cul4. Ces analyses nous ont permis d'identifier qu'un complexe E3 ligase CUL1 et un complexe E3 ligase CUL3A sont impliqués dans la régulation de la dégradation de phyA. Mes résultats démontrent aussi que le mutant cul4 n'est pas affecté dans la dégradation de phyA alors que Çonstitutive Photomorphogenic 1 (COPI) une sous unité d'un complexe CUL4 à été identifier dans la régulation de cette dégradation. Des analyses supplémentaires suggèrent que l'effet de la mutation cop1 est dépendante dë la présence de sucres métabolisables. J'ai aussi montré que phyA est dégradé dans le noyau et dans le cytoplasme par un mécanisme dépendant du protéasome et que la dégradation dans le.noyau est non seulement aspécifique de la forme Pr ou Pfr mais aussi est plus rapide que dans le cytoplasme. Ceci suggère que l'accumulation de phyA dans le cytoplasme permet son accumulation à des niveaux élevés à l'obscurité. Enfin j'ai identifié une région similaire à un motif PEST requise pour la stabilité de phyA et j'ai aussi développé un criblage génétique non biaisé pour identifier de nouveaux composants impliqués dans la régulation de la dégradation de phyA. L'importance de ces résultats est discutée dans le dernier chapitre de cette thèse.
Resumo:
Astonishing as it may seem, one organism's waste is often ideal food for another. Many waste products generated by human activities are routinely degraded by microorganisms under controlled conditions during waste-water treatment. Toxic pollutants resulting from inadvertent releases, such as oil spills, are also consumed by bacteria, the simplest organisms on Earth. Biodegradation of toxic or particularly persistent compounds, however, remains problematic. What has escaped the attention of many is that bacteria exposed to pollutants can adapt to them by mutating or acquiring degradative genes. These bacteria can proliferate in the environment as a result of the selection pressures created by pollutants. The positive outcome of selection pressure is that harmful compounds may eventually be broken down completely through biodegradation. The downside is that biodegradation may require extremely long periods of time. Although the adaptation process has been shown to be reproducible, it remains very difficult to predict.