198 resultados para oscillatory breathing
Resumo:
STUDY OBJECTIVES: We sought to determine the effect of expiratory positive airway pressure on end expiratory lung volume (EELV) and sleep disordered breathing in obstructive sleep apnea patients. DESIGN: Observational physiology study PARTICIPANTS: We studied 10 OSA patients during sleep wearing a facial mask. We recorded 1 hour of NREM sleep without treatment (baseline) and 1 hour with 10 cm H2O EPAP in random order, while measuring EELV and breathing pattern. RESULTS: The mean EELV change between baseline and EPAP was only 13.3 mL (range 2-25 mL). Expiratory time was significantly increased with EPAP compared to baseline 2.64 +/- 0.54 vs 2.16 +/- 0.64 sec (P = 0.002). Total respiratory time was longer with EPAP than at baseline 4.44 +/- 1.47 sec vs 3.73 +/- 0.88 sec (P = 0.3), and minute ventilation was lower with EPAP vs baseline 7.9 +/- 4.17 L/min vs 9.05 +/- 2.85 L/min (P = 0.3). For baseline (no treatment) and EPAP respectively, the mean apnea+hypopnea index (AHI) was 62.6 +/- 28.7 and 56.8 +/- 30.3 events per hour (P = 0.4). CONCLUSION: In OSA patients during sleep, the application of 10 cm H2O EPAP led to prolongation of expiratory time with only marginal increases in FRC. These findings suggest important mechanisms exist to avoid hyperinflation during sleep.
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.
Resumo:
PURPOSE: To investigate the potential of free-breathing 3D steady-state free precession (SSFP) imaging with radial k-space sampling for coronary MR-angiography (MRA), coronary projection MR-angiography and coronary vessel wall imaging. MATERIALS AND METHODS: A navigator-gated free-breathing T2-prepared 3D SSFP sequence (TR = 6.1 ms, TE = 3.0 ms, flip angle = 120 degrees, field-of-view = 360 mm(2)) with radial k-space sampling (384 radials) was implemented for coronary MRA. For projection coronary MRA, this sequence was combined with a 2D selective aortic spin tagging pulse. Coronary vessel wall imaging was performed using a high-resolution inversion-recovery black-blood 3D radial SSFP sequence (384 radials, TR = 5.3 ms, TE = 2.7 ms, flip angle = 55 degrees, reconstructed resolution 0.35 x 0.35 x 1.2 mm(3)) and a local re-inversion pulse. Six healthy volunteers (two for each sequence) were investigated. Motion artifact level was assessed by two radiologists. Results: In coronary MRA, the coronary lumen was displayed with a high signal and high contrast to the surrounding lumen. Projection coronary MRA demonstrated selective visualization of the coronary lumen while surrounding tissue was almost completely suppressed. In coronary vessel wall imaging, the vessel wall was displayed with a high signal when compared to the blood pool and the surrounding tissue. No visible motion artifacts were seen. Conclusion: 3D radial SSFP imaging enables coronary MRA, coronary projection MRA and coronary vessel wall imaging with a low motion artifact level.
Resumo:
Visual attention depends on bottom-up sensory activation and top-down attentional guidance. Although aging is known to affect sensory processing, its impact on the top-down control of attention remains a matter of debate. We investigated age-related modulations of brain oscillatory activity during visual attention using a variant of the attention network test (ANT) in 20 young and 28 elderly adults. We examined the EEG oscillatory responses to warning and target signals, and explored the correlates of temporal and spatial orienting as well as conflict resolution at target presentation. Time-frequency analysis was performed between 4 and 30Hz, and the relationship between behavioral and brain oscillatory responses was analyzed. Whereas temporal cueing and conflict had similar reaction time effects in both age groups, spatial cueing was more beneficial to older than younger subjects. In the absence of cue, posterior alpha activation was drastically reduced in older adults, pointing to an age-related decline in anticipatory attention. Following both cues and targets, older adults displayed pronounced motor-related activation in the low beta frequency range at the expense of attention-related posterior alpha activation prominent in younger adults. These findings support the recruitment of alternative motor-related circuits in the elderly, in line with the dedifferentiation hypothesis. Furthermore, older adults showed reduced midparietal alpha inhibition induced by temporal orienting as well as decreased posterior alpha activation associated with both spatial orienting and conflict resolution. Altogether, the results are consistent with an overall reduction of task-related alpha activity in the elderly, and provide functional evidence that younger and older adults engage distinct brain circuits at different oscillatory frequencies during attentional functions.
Resumo:
Modern urban lifestyle encourages the prolongation of wakefulness, leaving less and less time for sleep. Although the exact functions of sleep remain one of the biggest mysteries in neuroscience, the society is well aware of the negative consequences of sleep loss on human physical and mental health and performance. Enhancing sleep's recuperative functions might allow shortening sleep duration while preserving the beneficial effects of sleep. During sleep, brain activity oscillates across a continuum of frequencies. Individual oscillations have been suggested to underlie distinct functions for sleep and cognition. Gaining control about individual oscillations might allow boosting their specific functions. Sleep spindles are 11 - 15 Hz oscillations characteristic for light non-rapid-eye-movement sleep (NREMS) and have been proposed to play a role in memory consolidation and sleep protection against environmental stimuli. The reticular thalamic nucleus (nRt) has been identified as the major pacemaker of spindles. Intrinsic oscillatory burst discharge in nRt neurons, arising from the interplay of low-threshold (T-type) Ca2+ channels (T channels) and small conductance type 2 (SK2) K+ channels (SK2 channels), underlies this pacemaking function. In the present work we investigated the impact of altered nRt bursting on spindle generation during sleep by studying mutant mice for SK2 channels and for CaV3.3 channels, a subtype of T channels. Using in vitro electrophysiology I showed that nRt bursting was abolished in CaV3.3 knock out (CaV3.3 KO) mice. In contrast, in SK2 channel over-expressing (SK2-OE) nRt cells, intrinsic repetitive bursting was prolonged. Compared to wildtype (WT) littermates, altered nRt burst discharge lead to weakened thalamic network oscillations in vitro in CaV3.3 KO mice, while oscillatory activity was prolonged in SK2-OE mice. Sleep electroencephalographic recordings in CaV3.3 KO and SK2-OE mice revealed that reduced or potentiated nRt bursting respectively weakened or prolonged sleep spindle activity at the NREMS - REMS transition. Furthermore, SK2-OE mice showed more consolidated NREMS and increased arousal thresholds, two correlates of good sleep quality. This thesis work suggests that CaV3.3 and SK2 channels may be targeted in order to modulate sleep spindle activity. Furthermore, it proposes a novel function for spindles in NREMS consolidation. Finally, it provides evidence that sleep quality may be improved by promoting spindle activity, thereby supporting the hypothesis that sleep quality can be enhanced by modulating oscillatory activity in the brain. Le style de vie moderne favorise la prolongation de l'éveil, laissant de moins en moins de temps pour le sommeil. Même si le rôle exact du sommeil reste un des plus grands mystères des neurosciences, la société est bien consciente des conséquences négatives que provoque un manque de sommeil, à la fois sur le plan de la santé physique et mentale ainsi qu'au niveau des performances cognitives. Augmenter les fonctions récupératrices du sommeil pourrait permettre de raccourcir la durée du sommeil tout en en conservant les effets bénéfiques. Durant le sommeil, on observe des oscillations à travers un continuum de fréquences. Il a été proposé que chaque oscillation pourrait être à l'origine de fonctions spécifiques pour le sommeil et la cognition. Pouvoir de contrôler les oscillations individuelles permettrait d'augmenter leurs fonctions respectives. Les fuseaux sont des oscillations de 11 à 15 Hz caractéristiques du sommeil à ondes lentes léger et il a été suggéré qu'elles jouent un rôle majeur pour la consolidation de la mémoire ainsi que dans la protection du sommeil contre les stimuli environnementaux. Le nucleus réticulaire du thalamus (nRt) a été identifié en tant que générateur de rythme des fuseaux. Les bouffées oscillatoires intrinsèques des neurones du nRt, provenant de l'interaction de canaux calciques à bas seuil de type T (canaux T) et de canaux potassiques à faible conductance de type 2 (canaux SK2), sont à l'origine de la fonction de générateur de rythme. Dans ce travail, j'ai étudié l'impact de la modulation de bouffées de nRT sur la génération des fuseaux pendant le sommeil en investiguant des souris génétiquement modifiées pour les canaux SK2 et les canaux CaV3.3, un sous-type de canaux T. En utilisant l'électrophysiologie in vitro j'ai démontré que les bouffées du nRT étaient abolies dans les souris knock-out du type CaV3.3 (CaV3.3 KO). D'autre part, dans les cellules nRT sur-exprimant les canaux SK2 (SK2-OE), les bouffées oscillatoires intrinsèques étaient prolongées. Par rapport aux souris wild type, les souris CaV3.3 KO ont montré un affaiblissement des oscillations thalamiques en réponse à un changement des bouffées de nRT, alors que l'activité oscillatoire était prolongée dans les souris SK2-OE. Des enregistrements EEG du sommeil dans des souris de type CaV3.3 KO et SK2-OE ont révélé qu'une réduction ou augmentation des bouffées nRT ont respectivement affaibli ou prolongé l'activité des fuseaux durant les transitions du sommeil à ondes lentes au sommeil paradoxal. De plus, les souris SK2-OE ont montré des signes de consolidation du sommeil à ondes lentes et un seuil augmenté pour le réveil, deux mesures qui corrèlent avec une bonne qualité du sommeil. Le travail de cette thèse propose que les canaux CaV3.3 et SK2 pourrait être ciblés pour moduler l'activité des fuseaux. De plus, je propose une fonction nouvelle pour les fuseaux dans la consolidation du sommeil à ondes lentes. Finalement je suggère que la qualité du sommeil peut être améliorée en promouvant l'activité des fuseaux, soutenant ainsi l'idée que la qualité du sommeil peut être améliorée en modulant l'activité oscillatoire dans le cerveau.
Resumo:
For free-breathing, high-resolution, three-dimensional coronary magnetic resonance angiography (MRA), the use of intravascular contrast agents may be helpful for contrast enhancement between coronary blood and myocardium. In six patients, 0.1 mmol/kg of the intravascular contrast agent MS-325/AngioMARK was given intravenously followed by double-oblique, free-breathing, three-dimensional inversion-recovery coronary MRA with real-time navigator gating and motion correction. Contrast-enhanced, three-dimensional coronary MRA images were compared with images obtained with a T2 prepulse (T2Prep) without exogenous contrast. The contrast-enhanced images demonstrated a 69% improvement in the contrast-to-noise ratio (6.6 +/- 1.1 vs. 11.1 +/- 2.5; P < 0.01) compared with the T2Prep approach. By using the intravascular agent, extensive portions (> 80 mm) of the native left and right coronary system could be displayed consistently with sub-millimeter in-plane resolution. The intravascular contrast agent, MS-325/AngioMARK, leads to a considerable enhancement of the blood/muscle contrast for coronary MRA compared with T2Prep techniques. The clinical value of the agent remains to be defined in a larger patient series. J. Magn. Reson. Imaging 1999;10:790-799.
Resumo:
Selection of action may rely on external guidance or be motivated internally, engaging partially distinct cerebral networks. With age, there is an increased allocation of sensorimotor processing resources, accompanied by a reduced differentiation between the two networks of action selection. The present study examines the age effects on the motor-related oscillatory patterns related to the preparation of externally and internally guided movements. Thirty-two older and 30 younger adults underwent three delayed motor tasks with S1 as preparatory and S2 as imperative cue: Full, laterality instructed by S1 (external guidance); Free, laterality freely selected (internal guidance); None, laterality instructed by S2 (no preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Motor-Related Amplitude Asymmetries (MRAA), indexing the lateralization of oscillatory activities, were analyzed within the S1-S2 interval in the mu (9-12 Hz) and low beta (15-20 Hz) motor-related frequency bands. Reaction times to S2 were slower in older than younger subjects, and slower in the Free than in the Full condition in older subjects only. In the Full condition, there were significant mu MRAA in both age groups, and significant low beta MRAA only in older adults. The Free condition was associated with large mu MRAA in younger adults and limited low beta MRAA in older adults. In younger subjects, the lateralization of mu activity in both Full and Free conditions indicated effective external and internal motor preparation. In older subjects, external motor preparation was associated with lateralization of low beta in addition with mu activity, compatible with an increase of motor-related resources. In contrast, absence of mu and limited low beta lateralization in internal motor preparation was concomitant with reaction time slowing and suggested less efficient cerebral processes subtending free movement selection in older adults, indicating reduced capacity for internally driven action with age.
Resumo:
The purpose of this study was to investigate the impact of navigator timing on image quality in navigator-gated and real-time motion-corrected, free-breathing, three-dimensional (3D) coronary MR angiography (MRA) with submillimeter spatial image resolution. Both phantom and in vivo investigations were performed. 3D coronary MRA with real-time navigator technology was applied using variable navigator time delays (time delay between the navigator and imaging sequences) and varying spatial resolutions. Quantitative objective and subjective image quality parameters were assessed. For high-resolution imaging, reduced image quality was found as a function of increasing navigator time delay. Lower spatial resolution coronary MRA showed only minor sensitivity to navigator timing. These findings were consistent among volunteers and phantom experiments. In conclusion, for submillimeter navigator-gated and real-time motion-corrected 3D coronary MRA, shortening the time delay between the navigator and the imaging portion of the sequence becomes increasingly important for improved spatial resolution.
Resumo:
Morphology is the aspect of language concerned with the internal structure of words. In the past decades, a large body of masked priming (behavioral and neuroimaging) data has suggested that the visual word recognition system automatically decomposes any morphologically complex word into a stem and its constituent morphemes. Yet the reliance of morphology on other reading processes (e.g., orthography and semantics), as well as its underlying neuronal mechanisms are yet to be determined. In the current magnetoencephalography study, we addressed morphology from the perspective of the unification framework, that is, by applying the Hold/Release paradigm, morphological unification was simulated via the assembly of internal morphemic units into a whole word. Trials representing real words were divided into words with a transparent (true) or a nontransparent (pseudo) morphological relationship. Morphological unification of truly suffixed words was faster and more accurate and additionally enhanced induced oscillations in the narrow gamma band (60-85 Hz, 260-440 ms) in the left posterior occipitotemporal junction. This neural signature could not be explained by a mere automatic lexical processing (i.e., stem perception), but more likely it related to a semantic access step during the morphological unification process. By demonstrating the validity of unification at the morphological level, this study contributes to the vast empirical evidence on unification across other language processes. Furthermore, we point out that morphological unification relies on the retrieval of lexical semantic associations via induced gamma band oscillations in a cerebral hub region for visual word form processing.
Resumo:
OBJECTIVE: To assess the suitability of a hot-wire anemometer infant monitoring system (Florian, Acutronic Medical Systems AG, Hirzel, Switzerland) for measuring flow and tidal volume (Vt) proximal to the endotracheal tube during high-frequency oscillatory ventilation. DESIGN: In vitro model study. SETTING: Respiratory research laboratory. SUBJECT: In vitro lung model simulating moderate to severe respiratory distress. INTERVENTION: The lung model was ventilated with a SensorMedics 3100A ventilator. Vt was recorded from the monitor display (Vt-disp) and compared with the gold standard (Vt-adiab), which was calculated using the adiabatic gas equation from pressure changes inside the model. MEASUREMENTS AND MAIN RESULTS: A range of Vt (1-10 mL), frequencies (5-15 Hz), pressure amplitudes (10-90 cm H2O), inspiratory times (30% to 50%), and Fio2 (0.21-1.0) was used. Accuracy was determined by using modified Bland-Altman plots (95% limits of agreement). An exponential decrease in Vt was observed with increasing oscillatory frequency. Mean DeltaVt-disp was 0.6 mL (limits of agreement, -1.0 to 2.1) with a linear frequency dependence. Mean DeltaVt-disp was -0.2 mL (limits of agreement, -0.5 to 0.1) with increasing pressure amplitude and -0.2 mL (limits of agreement, -0.3 to -0.1) with increasing inspiratory time. Humidity and heating did not affect error, whereas increasing Fio2 from 0.21 to 1.0 increased mean error by 6.3% (+/-2.5%). CONCLUSIONS: The Florian infant hot-wire flowmeter and monitoring system provides reliable measurements of Vt at the airway opening during high-frequency oscillatory ventilation when employed at frequencies of 8-13 Hz. The bedside application could improve monitoring of patients receiving high-frequency oscillatory ventilation, favor a better understanding of the physiologic consequences of different high-frequency oscillatory ventilation strategies, and therefore optimize treatment.
Resumo:
The authors developed a free-breathing black-blood coronary magnetic resonance (MR) angiographic technique with a potential for exclusive visualization of the coronary blood pool. Results with the MR angiographic technique were evaluated in eight healthy subjects and four patients with coronary disease identified at conventional angiography. This MR angiographic technique accurately depicted luminal disease in the patients and permitted visualization of extensive continuous segments of the native coronary tree in both the healthy subjects and the patients. Black-blood coronary MR angiography provides an alternative source of contrast enhancement.
Resumo:
BACKGROUND: Three-dimensional (3D) navigator-gated and prospectively corrected free-breathing coronary magnetic resonance angiography (MRA) allows for submillimeter image resolution but suffers from poor contrast between coronary blood and myocardium. Data collected over >100 ms/heart beat are also susceptible to bulk cardiac and respiratory motion. To address these problems, we examined the effect of a T2 preparation prepulse (T2prep) for myocardial suppression and a shortened acquisition window on coronary definition. METHODS AND RESULTS: Eight healthy adult subjects and 5 patients with confirmed coronary artery disease (CAD) underwent free-breathing 3D MRA with and without T2prep and with 120- and 60-ms data-acquisition windows. The T2prep resulted in a 123% (P<0. 001) increase in contrast-to-noise ratio (CNR). Coronary edge definition was improved by 33% (P<0.001). Acquisition window shortening from 120 to 60 ms resulted in better vessel definition (11%; P<0.001). Among patients with CAD, there was a good correspondence with disease. CONCLUSIONS: Free-breathing, T2prep, 3D coronary MRA with a shorter acquisition window resulted in improved CNR and better coronary artery definition, allowing the assessment of coronary disease. This approach offers the potential for free-breathing, noninvasive assessment of the major coronary arteries.
Resumo:
OBJECTIVE: Diaphragmatic navigators are frequently used in free-breathing coronary MR angiography, either to gate or prospectively correct slice position or both. For such approaches, a constant relationship between coronary and diaphragmatic displacement throughout the respiratory cycle is assumed. The purpose of this study was to evaluate the relationship between diaphragmatic and coronary artery motion during free breathing. SUBJECTS AND METHODS: A real-time echoplanar MR imaging sequence was used in 12 healthy volunteers to obtain 30 successive images each (one per cardiac cycle) that included the left main coronary artery and the domes of both hemidiaphragms. The coronary artery and diaphragm positions (relative to isocenter) were determined and analyzed for effective diaphragmatic gating windows of 3, 5, and 7 mm (diaphragmatic excursions of 0-3, 0-5, and 0-7 mm from the end-expiratory position, respectively). RESULTS: Although the mean slope correlating the displacement of the right diaphragm and the left main coronary artery was approximately 0.6 for all diaphragmatic gating windows, we also found great variability among individual volunteers. Linear regression slopes varied from 0.17 to 0.93, and r2 values varied from .04 to .87. CONCLUSION: Wide individual variability exists in the relationship between coronary and diaphragmatic respiratory motion during free breathing. Accordingly, coronary MR angiographic approaches that use diaphragmatic navigator position for prospective slice correction may benefit from patient-specific correction factors. Alternatively, coronary MR angiography may benefit from a more direct assessment of the respiratory displacement of the heart and coronary arteries, using left ventricular navigators.