48 resultados para Polymerase Chain Reaction Detection
Resumo:
The performance of the Xpert MRSA polymerase chain reaction (PCR) assay on pooled nose, groin, and throat swabs (three nylon flocked eSwabs into one tube) was compared to culture by analyzing 5,546 samples. The sensitivity [0.78, 95 % confidence interval (CI) 0.73-0.82] and specificity (0.99, 95 % CI 0.98-0.99) were similar to the results from published studies on separated nose or other specimens. Thus, the performance of the Xpert MRSA assay was not affected by pooling the three specimens into one assay, allowing a higher detection rate without increasing laboratory costs, as compared to nose samples alone.
Resumo:
BACKGROUND: Cytomegalovirus (CMV) infection is associated with significant morbidity and mortality in transplant recipients. Resistance against ganciclovir is increasingly observed. According to current guidelines, direct drug resistance testing is not always performed due to high costs and work effort, even when resistance is suspected. OBJECTIVES: To develop a more sensitive, easy applicable and cost-effective assay as proof of concept for direct drug resistance testing in CMV surveillance of post-transplant patients. STUDY DESIGN: Five consecutive plasma samples from a heart transplant patient with a primary CMV infection were analyzed by quantitative real-time polymerase chain reaction (rtPCR) as a surrogate marker for therapy failure, and by direct drug resistance detection assays such as Sanger sequencing and the novel primer extension (PEX) reaction matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based method. RESULTS: This report demonstrates that PEX reaction followed by MALDI-TOF analysis detects the A594V mutation, encoding ganciclovir resistance, ten days earlier compared to Sanger sequencing and more than 30 days prior to an increase in viral load. CONCLUSION: The greatly increased sensitivity and rapid turnaround-time combined with easy handling and moderate costs indicate that this procedure could make a major contribution to improve transplantation outcomes.
Resumo:
Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether rRNA could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts and compared to quantitative real-time PCR amplification of either the 16S rRNA genes or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost > or =4 log(10) CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Tol1 mutant lost < or =1 log(10) CFU/ml. Amplification of a 427-bp fragment of 16S rRNA genes yielded amplicons that increased proportionally to viable counts during bacterial growth but did not decrease during drug-induced killing. In contrast, the same 427-bp fragment amplified from 16S rRNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Tol1 mutant (> or =4 log(10) CFU/ml and < or =1 log(10) CFU/ml, respectively) and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments, the experiments were repeated by amplifying a 119-bp region internal to the original 427-bp fragment. The amount of 119-bp amplicons increased proportionally to viability during growth but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical for differentiation between live and dead bacteria.
Resumo:
The CREB-binding protein (CBP) is a large nuclear protein that regulates many signal transduction pathways and is involved in chromatin-mediated transcription. The translocation t(8;16)(p11;p13.3) consistently disrupts two genes: the CBP gene on chromosome band 16p13.3 and the MOZ gene on chromosome band 8p11. Although a fusion of these two genes as a result of the translocation is expected, attempts at detecting the fusion transcript by reverse transcriptase polymerase chain reaction (RT-PCR) have proven difficult; to date, only one in-frame CBP/MOZ fusion transcript has been reported. We therefore sought other reliable means of detecting CBP rearrangements. We applied fluorescence in situ hybridization (FISH) and Southern blot analyses to a series of AML patients with a t(8;16) and detected DNA rearrangements of both the CBP and the MOZ loci in all cases tested. All six cases examined for CBP rearrangements have breakpoints within a 13 kb breakpoint cluster region at the 5' end of the CBP gene. Additionally, we used a MOZ cDNA probe to construct a surrounding cosmid contig and detect DNA rearrangements in three t(8;16) cases, all of which display rearrangements within a 6 kb genomic fragment of the MOZ gene. We have thus developed a series of cosmid probes that consistently detect the disruption of the CBP gene in t(8;16) patients. These clones could potentially be used to screen other cancer-associated or congenital translocations involving chromosome band 16p13.3 as well.
Resumo:
Waddlia chondrophila is considered as an emerging human pathogen likely involved in miscarriage and lower respiratory tract infections. Given the low sensitivity of cell culture to recover such an obligate intracellular bacteria, molecular-based diagnostic approaches are warranted. We thus developed a real-time PCR that amplifies Waddlia chondrophila DNA. Specific primers and probe were selected to target the 16S rRNA gene. The PCR specifically amplified W. chondrophila but did not amplify other related-bacteria such as Parachlamydia acanthamoebae, Simkania negevensis and Chlamydia pneumoniae. The PCR exhibited a good intra-run and inter-run reproducibility and a sensitivity of less than ten copies of the positive control. This real-time PCR was then applied to 32 nasopharyngeal aspirates taken from children with bronchiolitis not due to respiratory syncytial virus (RSV). Three samples revealed to be Waddlia positive, suggesting a possible role of this Chlamydia-related bacteria in this setting.
Resumo:
Agricultural practices, such as spreading liquid manure or the utilisation of land as animal pastures, can result in faecal contamination of water resources. Rhodococcus coprophilus is used in microbial source tracking to indicate animal faecal contamination in water. Methods previously described for detecting of R. coprophilus in water were neither sensitive nor specific. Therefore, the aim of this study was to design and validate a new quantitative polymerase chain reaction (qPCR) to improve the detection of R. coprophilus in water. The new PCR assay was based on the R. coprophilus 16S rRNA gene. The validation showed that the new approach was specific and sensitive for deoxyribunucleic acid from target host species. Compared with other PCR assays tested in this study, the detection limit of the new qPCR was between 1 and 3 log lower. The method, including a filtration step, was further validated and successfully used in a field investigation in Switzerland. Our work demonstrated that the new detection method is sensitive and robust to detect R. coprophilus in surface and spring water. Compared with PCR assays that are available in the literature or to the culture-dependent method, the new molecular approach improves the detection of R. coprophilus.
Resumo:
Molecular diagnosis using real-time polymerase chain reaction (PCR) may allow earlier diagnosis of rickettsiosis. We developed a duplex real-time PCR that amplifies (1) DNA of any rickettsial species and (2) DNA of both typhus group rickettsia, that is, Rickettsia prowazekii and Rickettsia typhi. Primers and probes were selected to amplify a segment of the 16S rRNA gene of Rickettsia spp. for the pan-rickettsial PCR and the citrate synthase gene (gltA) for the typhus group rickettsia PCR. Analytical sensitivity was 10 copies of control plasmid DNA per reaction. No cross-amplification was observed when testing human DNA and 22 pathogens or skin commensals. Real-time PCR was applied to 16 clinical samples. Rickettsial DNA was detected in the skin biopsies of three patients. In one patient with severe murine typhus, the typhus group PCR was positive in a skin biopsy from a petechial lesion and seroconversion was later documented. The two other patients with negative typhus group PCR suffered from Mediterranean and African spotted fever, respectively; in both cases, skin biopsy was performed on the eschar. Our duplex real-time PCR showed a good analytical sensitivity and specificity, allowing early diagnosis of rickettsiosis among three patients, and recognition of typhus in one of them.
Resumo:
The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.
Resumo:
Given the low sensitivity of amoebal coculture, we developed a specific real-time PCR for the detection of Parachlamydia. The analytical sensitivity was high, and the inter- and intrarun variabilities were low. When the PCR was applied to nasopharyngeal aspirates, it was positive for six patients with bronchiolitis. Future studies should assess the role of Parachlamydia in bronchiolitis.
Resumo:
Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.
Resumo:
RESUME Introduction : Les naissances prématurées compliquent 6-10 % des grossesses dans les pays industrialisés et contribuent de façon notable aux taux de mortalité périnatale et de morbidité néonatale. Il a été démontré que la colonisation bactérienne du liquide amniotique joue un rôle dans l'étiologie des accouchements prématurés spontanés et des ruptures prématurées des membranes. Le but de ce travail était d'évaluer la présence de Mycoplasma hominis dans le liquide amniotique prélevé au 2eme trimestre de grossesse chez des patientes asymptomatiques et de déterminer son association avec une issue défavorable de la grossesse. Matériels et méthodes : Les échantillons de liquide amniotique de 456 patientes ayant subi une amniocentèse trans-abdominale entre les 15eme et I7eme semaines de grossesse pour diverses indications ont été testés par PCR (Polymerase Chain Reaction) afin d'identifier Mycoplasma hominis. Les produits ainsi amplifiés étaient ensuite détectés par ELISA (Enzyme-Linked Immunosorbent Assay). Les données cliniques étaient obtenues après l'accouchement. Résultats : Mycoplasma hominis a été identifié dans 29 (6,4%) des échantillons de liquide amniotique. Le taux de menace d'accouchement prématuré chez les patientes positives pour Mycoplasma hominis (14,3%) était plus élevé que chez les patientes négatives (3,3 %) (p=0,01). De même, les naissances prématurées spontanées avec membranes intactes étaient plus fréquentes chez les patientes positives (10,7%) que chez les patientes négatives (1,9 %) (p=0,02). Le taux de menace d'accouchement prématuré lors d'une grossesse antérieure était plus de trois fois plus élevé chez les patientes positives, cependant ce résultat n'était pas statistiquement significatif. Finalement, la présence du mycoplasme n'était pas corrélée à la gestose, au retard de croissance intra-utérin ou aux anomalies chromosomiques foetales. Conclusions : Les résultats montrent que la présence de Mycoplasma hominis dans le liquide amniotique prélevé entre les 15eme et I7eme semaines d' aménorrhée chez des patientes asymptomatiques est associée à un taux plus élevé de menace d'accouchement prématuré et de naissances prématurées spontanées. La détection de ce microorganisme au 2eme trimestre de la grossesse peut donc identifier les patientes à risque de menace d'accouchement et de naissance prématurées. Abstract Objective: The relationship between detection of Mycoplasma hominis in mid-trimester amniotic fluid and subsequent pregnancy outcome was investigated. Study design: Amniotic fluids from 456 women of European background who underwent a transabdominal amniocentesis at weeks 15-17 of pregnancy were tested for M. hominis by polymerase chain reaction (PCR). The amplicons were hybridized to an internal probe and detected by ELISA. Pregnancy outcomes and clinical data were subsequently obtained. Results: M. hominis were identified in 29 (6.4%) of the amniotic fluids. The rate of preterm labor in women positive for M. hominis (14.3%) was higher than in the negative women (3.3%) (p = 0.01). Similarly, a spontaneous preterm birth with intact membranes occurred in 10.7% of the M. hominis-posltive women as opposed to only 1.9% of the negative women (p = 0.02). The presence of this mycoplasma was not correlated with fetal chromosomal aberrations, intrauterine growth restriction or preeclampsia. Conclusions: Detection of M. hominis in second-trimester amniotic fluids can identify women at increased risk for subsequent preterm labor and delivery.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
Background: Gene expression analysis has emerged as a major biological research area, with real-time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely used techniques for expression profiling of selected genes. In order to obtain results that are comparable across assays, a stable normalization strategy is required. In general, the normalization of PCR measurements between different samples uses one to several control genes (e. g. housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the control genes is of utmost importance, yet there is not a generally accepted standard technique for screening a large number of candidates and identifying the best ones. Results: We propose a novel approach for scoring and ranking candidate genes for their suitability as control genes. Our approach relies on publicly available microarray data and allows the combination of multiple data sets originating from different platforms and/or representing different pathologies. The use of microarray data allows the screening of tens of thousands of genes, producing very comprehensive lists of candidates. We also provide two lists of candidate control genes: one which is breast cancer-specific and one with more general applicability. Two genes from the breast cancer list which had not been previously used as control genes are identified and validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/similar to vpopovic/research/ Conclusion: We proposed a new method for identifying candidate control genes for RT-QPCR which was able to rank thousands of genes according to some predefined suitability criteria and we applied it to the case of breast cancer. We also empirically showed that translating the results from microarray to PCR platform was achievable.
Resumo:
The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.