221 resultados para Cultures (Biology)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor environment is critical for tumor maintenance and progression. Integrins are a large family of cell surface receptors mediating the interaction of tumor cells with their microenvironment and play important roles in glioma biology, including migration, invasion, angiogenesis and tumor stem cell anchorage. Here, we review preclinical and clinical data on integrin inhibition in malignant gliomas. Various pharmacological approaches to the modulation of integrin signaling have been explored including antibodies and peptide-based agents. Cilengitide, a cyclic RGD-mimetic peptide of αvβ3 and αvβ5 integrins is in advanced clinical development in glioblastoma. Cilengitide had only limited activity as a single agent in glioblastoma, but, when added to standard radiochemotherapy, appeared to prolong progression-free and overall survival in patients with newly diagnosed glioblastomas and methylation of the promoter of the O⁶ methylguanine methyltransferase (MGMT) gene. MGMT gene promoter methylation in turn predicts benefit from alkylating chemotherapy. A phase III randomized clinical trial in conjunction with standard radiochemotherapy in newly diagnosed glioblastoma patients with MGMT gene promoter methylation has recently completed accrual (EORTC 26071-22072). A companion trial explores a dose-escalated regimen of cilengitide added to radiotherapy plus temozolomide in patients without MGMT gene promoter methylation. Promising results in these trials would probably result in a broader interest in integrins as targets for glioma therapy and hopefully the development of a broader panel of anti-integrin agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperammonemia in the brain leads to poorly understood alterations of nitric oxide (NO) synthesis. Arginine, the substrate of nitric oxide synthases, might be recycled from the citrulline produced with NO by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL). The regulation of AS and AL genes during hyperammonemia is unknown in the brain. We used brain cell aggregates cultured from dissociated telencephalic cortex of rat embryos to analyze the regulation of AS and AL genes in hyperammonemia. Using RNase protection assay and non-radioactive in situ hybridization on aggregate cryosections, we show that both AS and AL genes are induced in astrocytes but not in neurons of aggregates exposed to 5 mM NH4Cl. Our work suggests that the hyperammonemic brain might increase its recycling of citrulline to arginine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circadian timing system controls cell cycle, apoptosis, drug bioactivation, and transport and detoxification mechanisms in healthy tissues. As a consequence, the tolerability of cancer chemotherapy varies up to several folds as a function of circadian timing of drug administration in experimental models. Best antitumor efficacy of single-agent or combination chemotherapy usually corresponds to the delivery of anticancer drugs near their respective times of best tolerability. Mathematical models reveal that such coincidence between chronotolerance and chronoefficacy is best explained by differences in the circadian and cell cycle dynamics of host and cancer cells, especially with regard circadian entrainment and cell cycle variability. In the clinic, a large improvement in tolerability was shown in international randomized trials where cancer patients received the same sinusoidal chronotherapy schedule over 24h as compared to constant-rate infusion or wrongly timed chronotherapy. However, sex, genetic background, and lifestyle were found to influence optimal chronotherapy scheduling. These findings support systems biology approaches to cancer chronotherapeutics. They involve the systematic experimental mapping and modeling of chronopharmacology pathways in synchronized cell cultures and their adjustment to mouse models of both sexes and distinct genetic background, as recently shown for irinotecan. Model-based personalized circadian drug delivery aims at jointly improving tolerability and efficacy of anticancer drugs based on the circadian timing system of individual patients, using dedicated circadian biomarker and drug delivery technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple sclerosis. In the present study, we examined whether a modulation of brain inflammatory by THC may protect against demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment (3x) with the two inflammatory agents interferon-y (IFN-y) and lipopolysaccharide (LPS). The effects of THC on an acute inflammatory reponse were also examined by treating the aggregates with a single application of the two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory reponse were analyzed. THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content measured by immunoblotting. It prevented IFN-y + LPS -induced microglial reactivity; and decreased the IFN-y + LPS-induced i8ncreased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single application of the inflammatory agents, but not after repeated applications. THC protected partially against the IFN-y + LPS-induced demyelination. The protective effect of THC on IFN-y + LPS-induced demyelination may be due to a decrease of the inflammatory reponse. However, the anti-inflammatory effect of THC on some inflammatory markers is lost when the inflammatory response is more proeminent and of longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog signaling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have hitherto lacked effective treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND. Human primary fetal bone cells (hFBC) are being characterized for use in bone tissue regeneration. Unlike human mesenchymal stem cells (hMSC), hFBC are partially differentiated with high expansion and regeneration potential. To date, proliferative and osteoblastic differentiation capacities of fetal bone cells remain poorly examined. The goal of this study was to define an environmental culture conditions for optimal proliferation and production of extracellular bone matrix leading to efficient bone repair. METHODS. Human primary FBC derived from our dedicated, consistent banks of bone cells comprising several fetal donors. For proliferation study, monolayer cultures of both cell types were expanded in DMEM or α- MEM media. Osteoblastic differentiation potentials of both hFBC and hMSC were evaluated through RT-PCR. Regulation of osteogenic differentiation by protein ligands Wnt3a and Wnt5a was studied by ALP enzymatic activity measurement. RESULTS. Evaluation of the proliferation rate demonstrated that hFBC proliferated more rapidly in α-MEM medium. Regarding growth factors that could stimulate cell proliferation rate, we observed that PDGF, FGF2 and Wnt3a had positive effects on proliferation of hFBC. Gene expression analysis demonstrated a higher expression of runx2 in hFBC cultured in basal conditions, which was was similar than that was observed in hMSC in osteoinductive culture conditions. Expression of sox9 was very low in hBFC and hMSC, compared to expression observed in fetal cartilage cells. Looking at osteogenic differentiation capacity, ALP activity was positively regulated byWnt5awhen hFBCwere cultured inα-MEM, but not in DMEM. Conversely, Wnt3a was shown to block the effect of osteogenic inductors on differentiation of both cell types. CONCLUSION. Data presented in this study indicate that the proliferation and differentiation of fetal and mesenchymal stem cells is optimal in α- MEM. Evidence for a pre-differentiated state of hBFC was given by extracellular matrix spontaneous mineralization as well as by higher ALP activity levels observed for these cells in baseline culture conditions, in comparison with hMSC. As we showed that, in vitro, hFBC express a higher capacity to differentiate in osteoblasts, they represent an attractive and promising prospect for fundamental research, and specifically for a new generation of skeletal tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE OF THE FIELD: Promising immunotherapeutic agents targeting co-stimulatory pathways are currently being tested in clinical trials. One player in this array of regulatory pathways is the LAG-3/MHC class II axis. The lymphocyte activation gene-3 (LAG-3) is a negative co-stimulatory receptor that modulates T cell homeostasis, proliferation and activation. A recombinant soluble dimeric form of LAG-3 (sLAG-3-Ig, IMP321) shows adjuvant properties and enhances immunogenicity of tumor vaccines. Recent clinical trials produced encouraging results, especially when the human dimeric soluble form of LAG-3 (hLAG-3-Ig) was used in combination with chemotherapy. AREAS COVERED IN THIS REVIEW: The biological relevance of LAG-3 in vivo. Pre-clinical data demonstrating adjuvant properties, as well as the improvement of tumor immunity by sLAG-3-Ig. Recent advances in the clinical development of the therapeutic reagent IMP321, hLAG-3-Ig, for cancer treatment. WHAT THE READER WILL GAIN: This review summarizes preclinical and clinical data on the biological functions of LAG-3. TAKE HOME MESSAGE: The LAG-3 inhibitory pathway is attracting attention, in the light of recent studies demonstrating its role in T cell unresponsiveness, and Treg function after chronic antigen stimulation. As a soluble recombinant dimer, the sLAG-3-Ig protein acts as an adjuvant for therapeutic induction of T cell responses, and may be beneficial to cancer patients when used in combination therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregating brain cell cultures of fetal rat telencephalon can be grown in a chemically defined medium for extended periods of time. After a phase of intense mitotic activity, these three-dimensional cell cultures undergo extensive morphological differentiation, including synaptogenesis and myelination. To study the developmental toxicity of organophosphorus compounds (OP), aggregating brain cell cultures were treated with parathion. Protein content and cell type-specific enzyme activities were not affected up to a concentration of 10(5) M. Gliosis, characterized by an increased staining for glial fibrillary acidic protein (GFAP), was observed in immature and in differentiated cells. In contrast, uridine incorporation and myelin basic protein (MBP) immunoreactivity revealed strong differences in sensitivity between these two developmental stages. These results are in agreement with the view that in vivo the development-dependent toxicity is not only due to changes in hepatic detoxification, but also to age-related modifications in the susceptibility of the different populations of brain cells. Furthermore, they underline the usefulness of histotypic culture systems with a high developmental potential, such as aggregating brain cell cultures, and stress the importance of applying a large range of criteria for testing the developmental toxicity of potential neurotoxicants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i.e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i.e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems.