176 resultados para Cluster-tree networks
Resumo:
1.1 Fundamentals Chest pain is a common complaint in primary care patients (1 to 3% of all consultations) (1) and its aetiology can be miscellaneous, from harmless to potentially life threatening conditions. In primary care practice, the most prevalent aetiologies are: chest wall syndrome (43%), coronary heart disease (12%) and anxiety (7%) (2). In up to 20% of cases, potentially serious conditions as cardiac, respiratory or neoplasic diseases underlie chest pain. In this context, a large number of laboratory tests are run (42%) and over 16% of patients are referred to a specialist or hospitalized (2).¦A cardiovascular origin to chest pain can threaten patient's life and investigations run to exclude a serious condition can be expensive and involve a large number of exams or referral to specialist -‐ often without real clinical need. In emergency settings, up to 80% of chest pains in patients are due to cardiovascular events (3) and scoring methods have been developed to identify conditions such as coronary heart disease (HD) quickly and efficiently (4-‐6). In primary care, a cardiovascular origin is present in only about 12% of patients with chest pain (2) and general practitioners (GPs) need to exclude as safely as possible a potential serious condition underlying chest pain. A simple clinical prediction rule (CPR) like those available in emergency settings may therefore help GPs and spare time and extra investigations in ruling out CHD in primary care patients. Such a tool may also help GPs reassure patients with more common origin to chest pain.
Resumo:
In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.
Resumo:
Social insects use multiple lines of collective defences to combat pathogens. One example of a behav- ioural group defence is the use of antimicrobial plant compounds to disinfect the nest. Indeed, wood ants collect coniferous tree resin, and the presence of resin in their nest protects them against fungal and bacterial pathogens. Many questions remain on the mechanisms of resin use, including which factors elicit resin collection and placement within nests. Here, we investigated whether the presence of brood induces Formica paralugubris workers to collect more resin, and whether the workers preferentially place resin near the brood. We also tested whether the collection and placement of resin depends on the presence of the fungal entomopathogen Beauveria bassiana. Workers brought more resin to their nest when brood was present, and preferentially placed the resin near the brood. In contrast, workers did not increase resin collection in response to exposure to B. bassiana, nor did they place resin closer to contaminated brood or contaminated areas of the nest. This lack of response may be explained by a limited effect of resin against the germination and growth of B. bassiana in vitro. Overall, our main result is that woods ants actively position resin near the brood, which probably confers prophylactic protection against other detrimental microorganisms.
Resumo:
L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a potent antibiotic and toxin produced by Pseudomonas aeruginosa. Using a novel biochemical assay combined with site-directed mutagenesis in strain PAO1, we have identified a five-gene cluster specifying AMB biosynthesis, probably involving a thiotemplate mechanism. Overexpression of this cluster in strain PA7, a natural AMB-negative isolate, led to AMB overproduction.
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.
Resumo:
It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it "generates" several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of "generates." Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.
Resumo:
Recent studies have reported specific executive and attentional deficits in preterm children. However, the majority of this research has used multidetermined tasks to assess these abilities, and the interpretation of the results lacks an explicit theoretical backdrop to better understand the origin of the difficulties observed. In the present study, we used the Child Attention Network Task (Child ANT; Rueda et al. 2004) to assess the efficiency of the alerting, orienting and executive control networks. We compared the performance of 25 preterm children (gestational age < or = 32 weeks) to 25 full-term children, all between 5(1/2) and 6(1/2) years of age. Results showed that, as compared to full-term children, preterm children were slower on all conditions of the Child ANT and had a specific deficit in executive control abilities. We also observed a significantly higher correlation between the orienting and executive control networks in the preterm group, suggesting less differentiation of these two networks in this population.
Resumo:
This paper analyses and discusses arguments that emerge from a recent discussion about the proper assessment of the evidential value of correspondences observed between the characteristics of a crime stain and those of a sample from a suspect when (i) this latter individual is found as a result of a database search and (ii) remaining database members are excluded as potential sources (because of different analytical characteristics). Using a graphical probability approach (i.e., Bayesian networks), the paper here intends to clarify that there is no need to (i) introduce a correction factor equal to the size of the searched database (i.e., to reduce a likelihood ratio), nor to (ii) adopt a propositional level not directly related to the suspect matching the crime stain (i.e., a proposition of the kind 'some person in (outside) the database is the source of the crime stain' rather than 'the suspect (some other person) is the source of the crime stain'). The present research thus confirms existing literature on the topic that has repeatedly demonstrated that the latter two requirements (i) and (ii) should not be a cause of concern.
Resumo:
Game theory is a branch of applied mathematics used to analyze situation where two or more agents are interacting. Originally it was developed as a model for conflicts and collaborations between rational and intelligent individuals. Now it finds applications in social sciences, eco- nomics, biology (particularly evolutionary biology and ecology), engineering, political science, international relations, computer science, and philosophy. Networks are an abstract representation of interactions, dependencies or relationships. Net- works are extensively used in all the fields mentioned above and in many more. Many useful informations about a system can be discovered by analyzing the current state of a network representation of such system. In this work we will apply some of the methods of game theory to populations of agents that are interconnected. A population is in fact represented by a network of players where one can only interact with another if there is a connection between them. In the first part of this work we will show that the structure of the underlying network has a strong influence on the strategies that the players will decide to adopt to maximize their utility. We will then introduce a supplementary degree of freedom by allowing the structure of the population to be modified along the simulations. This modification allows the players to modify the structure of their environment to optimize the utility that they can obtain.
Resumo:
Positron emission tomography with [18F] fluorodeoxyglucose (FDG-PET) plays a well-established role in assisting early detection of frontotemporal lobar degeneration (FTLD). Here, we examined the impact of intensity normalization to different reference areas on accuracy of FDG-PET to discriminate between patients with mild FTLD and healthy elderly subjects. FDG-PET was conducted at two centers using different acquisition protocols: 41 FTLD patients and 42 controls were studied at center 1, 11 FTLD patients and 13 controls were studied at center 2. All PET images were intensity normalized to the cerebellum, primary sensorimotor cortex (SMC), cerebral global mean (CGM), and a reference cluster with most preserved FDG uptake in the aforementioned patients group of center 1. Metabolic deficits in the patient group at center 1 appeared 1.5, 3.6, and 4.6 times greater in spatial extent, when tracer uptake was normalized to the reference cluster rather than to the cerebellum, SMC, and CGM, respectively. Logistic regression analyses based on normalized values from FTLD-typical regions showed that at center 1, cerebellar, SMC, CGM, and cluster normalizations differentiated patients from controls with accuracies of 86%, 76%, 75% and 90%, respectively. A similar order of effects was found at center 2. Cluster normalization leads to a significant increase of statistical power in detecting early FTLD-associated metabolic deficits. The established FTLD-specific cluster can be used to improve detection of FTLD on a single case basis at independent centers - a decisive step towards early diagnosis and prediction of FTLD syndromes enabling specific therapies in the future.
Resumo:
In this paper, we introduce the concept of dyadic pulsations as a measure of sustainability in online discussion groups. Dyadic pulsations correspond to new communication exchanges occurring between two participants in a discussion group. A group that continuously integrates new participants in the on-going conversation is characterized by a steady dyadic pulsation rhythm. On the contrary, groups that either pursue close conversation or unilateral communication have no or very little dyadic pulsations. We show on two examples taken from Usenet discussion groups, that dyadic pulsations permit to anticipate future bursts in response delay time which are signs of group discussion collapses. We discuss ways of making this measure resilient to spam and other common algorithmic production that pollutes real discussions