42 resultados para search metaheuristics
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of state-of-the-art results without the use of too much problem-specific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the artalgorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance.
Resumo:
In today s highly competitive and global marketplace the pressure onorganizations to find new ways to create and deliver value to customersgrows ever stronger. In the last two decades, logistics and supply chainhas moved to the center stage. There has been a growing recognition thatit is through an effective management of the logistics function and thesupply chain that the goal of cost reduction and service enhancement canbe achieved. The key to success in Supply Chain Management (SCM) requireheavy emphasis on integration of activities, cooperation, coordination andinformation sharing throughout the entire supply chain, from suppliers tocustomers. To be able to respond to the challenge of integration there isthe need of sophisticated decision support systems based on powerfulmathematical models and solution techniques, together with the advancesin information and communication technologies. The industry and the academiahave become increasingly interested in SCM to be able to respond to theproblems and issues posed by the changes in the logistics and supply chain.We present a brief discussion on the important issues in SCM. We then arguethat metaheuristics can play an important role in solving complex supplychain related problems derived by the importance of designing and managingthe entire supply chain as a single entity. We will focus specially on theIterated Local Search, Tabu Search and Scatter Search as the ones, but notlimited to, with great potential to be used on solving the SCM relatedproblems. We will present briefly some successful applications.
Resumo:
In this paper we present an algorithm to assign proctors toexams. This NP-hard problem is related to the generalized assignmentproblem with multiple objectives. The problem consists of assigningteaching assistants to proctor final exams at a university. We formulatethis problem as a multiobjective integer program (IP) with a preferencefunction and a workload-fairness function. We then consider also a weightedobjective that combines both functions. We develop a scatter searchprocedure and compare its outcome with solutions found by solving theIP model with CPLEX 6.5. Our test problems are real instances from aUniversity in Spain.
Resumo:
We present new metaheuristics for solving real crew scheduling problemsin a public transportation bus company. Since the crews of thesecompanies are drivers, we will designate the problem by the bus-driverscheduling problem. Crew scheduling problems are well known and severalmathematical programming based techniques have been proposed to solvethem, in particular using the set-covering formulation. However, inpractice, there exists the need for improvement in terms of computationalefficiency and capacity of solving large-scale instances. Moreover, thereal bus-driver scheduling problems that we consider can present variantaspects of the set covering, as for example a different objectivefunction, implying that alternative solutions methods have to bedeveloped. We propose metaheuristics based on the following approaches:GRASP (greedy randomized adaptive search procedure), tabu search andgenetic algorithms. These metaheuristics also present some innovationfeatures based on and genetic algorithms. These metaheuristics alsopresent some innovation features based on the structure of the crewscheduling problem, that guide the search efficiently and able them tofind good solutions. Some of these new features can also be applied inthe development of heuristics to other combinatorial optimizationproblems. A summary of computational results with real-data problems ispresented.
Resumo:
We provide some guidelines for deriving new projective hash families of cryptographic interest. Our main building blocks are so called group action systems; we explore what properties of this mathematical primitives may lead to the construction of cryptographically useful projective hash families. We point out different directions towards new constructions, deviating from known proposals arising from Cramer and Shoup's seminal work.
Resumo:
We accomplish two goals. First, we provide a non-cooperative foundation for the use of the Nash bargaining solution in search markets. This finding should help to close the rift between the search and the matching-and-bargaining literature. Second, we establish that the diversity of quality offered (at an increasing price-quality ratio) in a decentralized market is an equilibrium phenomenon - even in the limit as search frictions disappear.
Resumo:
We study pair-wise decentralized trade in dynamic markets with homogeneous, non-atomic, buyers and sellers that wish to exchange one unit. Pairs of traders are randomly matched and bargaining a price under rules that offer the freedom to quit the match at any time. Market equilbria, prices and trades over time, are characterized. The asymptotic behavior of prices and trades as frictions (search costs and impatience) vanish, and the conditions for (non) convergence to walrasian prices are explored. As a side product of independent interest, we present a self-contained theory of non-cooperative bargaining with two-sided, time-varying, outside options.
Resumo:
A growing literature integrates theories of debt management into models of optimal fiscal policy. One promising theory argues that the composition of government debt should be chosen so that fluctuations in the market value of debt offset changes in expected future deficits. This complete market approach to debt management is valid even when the government only issues non-contingent bonds. A number of authors conclude from this approach that governments should issue long term debt and invest in short term assets. We argue that the conclusions of this approach are too fragile to serve as a basis for policy recommendations. This is because bonds at different maturities have highly correlated returns, causing the determination of the optimal portfolio to be ill-conditioned. To make this point concrete we examine the implications of this approach to debt management in various models, both analytically and using numerical methods calibrated to the US economy. We find the complete market approach recommends asset positions which are huge multiples of GDP. Introducing persistent shocks or capital accumulation only worsens this problem. Increasing the volatility of interest rates through habits partly reduces the size of these simulations we find no presumption that governments should issue long term debt ? policy recommendations can be easily reversed through small perturbations in the specification of shocks or small variations in the maturity of bonds issued. We further extend the literature by removing the assumption that governments every period costlessly repurchase all outstanding debt. This exacerbates the size of the required positions, worsens their volatility and in some cases produces instability in debt holdings. We conclude that it is very difficult to insulate fiscal policy from shocks by using the complete markets approach to debt management. Given the limited variability of the yield curve using maturities is a poor way to substitute for state contingent debt. The result is the positions recommended by this approach conflict with a number of features that we believe are important in making bond markets incomplete e.g allowing for transaction costs, liquidity effects, etc.. Until these features are all fully incorporated we remain in search of a theory of debt management capable of providing robust policy insights.
Resumo:
CODEX SEARCH es un motor de recuperación de información especializado en derecho de extranjería que está basado en herramientas y conocimiento lingüísticos. Un motor o Sistema de Recuperación de Información (SRI) es un software capaz de localizar información en grandes colecciones documentales (entorno no trivial) en formato electrónico. Mediante un estudio previo se ha detectado que la extranjería es un ámbito discursivo en el que resulta difícil expresar la necesidad de información en términos de una consulta formal, objeto de los sistemas de recuperación actuales. Por lo tanto, para desarrollar un SRI eficiente en el dominio indicado no basta con emplear un modelo tradicional de RI, es decir, comparar los términos de la pregunta con los de la respuesta, básicamente porque no expresan implicaciones y porque no tiene que haber necesariamente una relación 1 a 1. En este sentido, la solución lingüística propuesta se basa en incorporar el conocimiento del especialista mediante la integración en el sistema de una librería de casos. Los casos son ejemplos de procedimientos aplicados por expertos a la solución de problemas que han ocurrido en la realidad y que han terminado en éxito o fracaso. Los resultados obtenidos en esta primera fase son muy alentadores pero es necesario continuar la investigación en este campo para mejorar el rendimiento del prototipo al que se puede acceder desde &http://161.116.36.139/~codex/&.
Resumo:
This paper examines the antecedents and innovation consequences of the methods firms adopt in organizing their search strategies. From a theoretical perspective, organizational search is described using a typology that shows how firms implement exploration and exploitation search activities that span their organizational boundaries. This typology includes three models of implementation: ambidextrous, specialized, and diversified implementation. From an empirical perspective, the paper examines the performance consequences when applying these models, and compares their capacity to produce complementarities. Additionally, since firms' choices in matters of organizational search are viewed as endogenous variables, the paper examines the drivers affecting them and identifies the importance of firms' absorptive capacity and diversified technological opportunities in determining these choices. The empirical design of the paper draws on new data for manufacturing firms in Spain, surveyed between 2003 and 2006.
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flowcomputation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we develop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional multilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrectional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimization search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow computation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
One of the unresolved questions of modern physics is the nature of Dark Matter. Strong experimental evidences suggest that the presence of this elusive component in the energy budget of the Universe is quite significant, without, however, being able to provide conclusive information about its nature. The most plausible scenario is that of weakly interacting massive particles (WIMPs), that includes a large class of non-baryonic Dark Matter candidates with a mass typically between few tens of GeV and few TeVs, and a cross section of the order of weak interactions. Search for Dark Matter particles using very high energy gamma-ray Cherenkov telescopes is based on the model that WIMPs can self-annihilate, leading to production of detectable species, like photons. These photons are very energetic, and since unreflected by the Universe's magnetic fields, they can be traced straight to the source of their creation. The downside of the approach is a great amount of background radiation, coming from the conventional astrophysical objects, that usually hides clear signals of the Dark Matter particle interactions. That is why good choice of the observational candidates is the crucial factor in search for Dark Matter. With MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov Telescopes), a two-telescope ground-based system located in La Palma, Canary Islands, we choose objects like dwarf spheroidal satellite galaxies of the Milky Way and galaxy clusters for our search. Our idea is to increase chances for WIMPs detection by pointing to objects that are relatively close, with great amount of Dark Matter and with as-little-as-possible pollution from the stars. At the moment, several observation projects are ongoing and analyses are being performed.
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task