9 resultados para resistance induction
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Cereal cyst nematode (CCN, Heterodera avenae) and Hessian fly (HF, Mayetiola destructor) are two major pests affecting wheat crops worldwide including important cereal areas of Spain. Aegilops ventricosa and Ae. triuncialis were used as donors in a strategy to introduce resistance genes (RG) for these pests in hexaploid wheat (Triticum aestivum L.). Two 42 chromosomes introgression lines have been derived from Ae. ventricosa: H-93-8 and H-93-33 carrying genes Cre2 and H27 conferring resistance to CCN and HF, respectively. Line TR-3531 with 42 chromosomes has been derived from Ae. triuncialis and carries RGs conferring resistance for CCN (Cre7) and for HF (H30). Alien material has been incorporated in lines H-93 by chromosomal substitution and recombination, while in line TR-3531 homoeologous recombination affecting small DNA fragments has played a major role. It has been demonstrated that Cre2, Cre7, H27 and H30 are major single dominant genes and not allelic of other previously described RGs. Biochemical and molecular-biology studies of the defense mechanism triggered by Cre2 and Cre7 have revealed specific induction of peroxidase and other antioxidant enzymes. In parallel to these basic studies advanced lines carrying resistance genes for CNN and/or HF have been developed. Selection was done using molecular markers for eventually «pyramiding» resistance genes. Several isozyme and RAPD markers have been described and, currently, new markers based on transposable elements and NBS-LRR sequences are being developed. At present, two advanced lines have already been included at the Spanish Catalogue of Commercial Plant Varieties.
Resumo:
While the theoretical industrial organization literature has long argued that excess capacity can be used to deter entry into markets, there is little empirical evidence that incumbent firms effectively behave in this way. Bagwell and Ramey (1996) propose a game with a specific sequence of moves and partially-recoverable capacity costs in which forward induction provides a theoretical rationalization for firm behavior in the field. We conduct an experiment with a game inspired by their work. In our data the incumbent tends to keep the market, in contrast to what the forward induction argument of Bagwell and Ramey would suggest. The results indicate that players perceive that the first mover has an advantage without having to pre-commit capacity. In our game, evolution and learning do not drive out this perception. We back these claims with data analysis, a theoretical framework for dynamics, and simulation results.
Resumo:
We analyze which normal form solution concepts capture the notion offorward induction, as defined by van Damme (JET, 1989) in the classof generic two player normal form games preceded by an outsideoption. We find that none of the known strategic stability concepts(including Mertens stable sets and hyperstable sets) captures this form of forward induction. On the other hand, we show that the evolutionary concept of EES set (Swinkels, JET, 1992) is always consistent with forward induction.
Resumo:
Individual-specific uncertainty may increase the chances of reform beingenacted and sustained. Reform may be more likely to be enacted because amajority of agents might end up losing little from reform and a minoritygaining a lot. Under certainty, reform would therefore be rejected, butit may be enacted with uncertainty because those who end up losing believethat they might be among the winners. Reform may be more likely to besustained because, in a realistic setting, reform will increase theincentives of agents to move into those economic activities that benefit.Agents who respond to these incentives will vote to sustain reform infuture elections, even if they would have rejected reform under certainty.These points are made using the trade-model of Fernandez and Rodrik (AER,1991).
Resumo:
While the theoretical industrial organization literature has long arguedthat excess capacity can be used to deter entry into markets, there islittle empirical evidence that incumbent firms effectively behave in thisway. Bagwell and Ramey (1996) propose a game with a specific sequence ofmoves and partially-recoverable capacity costs in which forward inductionprovides a theoretical rationalization for firm behavior in the field. Weconduct an experiment with a game inspired by their work. In our data theincumbent tends to keep the market, in contrast to what the forwardinduction argument of Bagwell and Ramey would suggest. The results indicatethat players perceive that the first mover has an advantage without havingto pre-commit capacity. In our game, evolution and learning do not driveout this perception. We back these claims with data analysis, atheoretical framework for dynamics, and simulation results.
Resumo:
The advances of the semiconductor industry enable microelectromechanical systems sensors, signal conditioning logic and network access to be integrated into a smart sensor node. In this framework, a mixed-mode interface circuit for monolithically integrated gas sensor arrays was developed with high-level design techniques. This interface system includes analog electronics for inspection of up to four sensor arrays and digital logic for smart control and data communication. Although different design methodologies were used in the conception of the complete circuit, high-level synthesis tools and methodologies were crucial in speeding up the whole design cycle, enhancing reusability for future applications and producing a flexible and robust component.