86 resultados para refined plastic hinge method
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
When using a polynomial approximating function the most contentious aspect of the Heat Balance Integral Method is the choice of power of the highest order term. In this paper we employ a method recently developed for thermal problems, where the exponent is determined during the solution process, to analyse Stefan problems. This is achieved by minimising an error function. The solution requires no knowledge of an exact solution and generally produces significantly better results than all previous HBI models. The method is illustrated by first applying it to standard thermal problems. A Stefan problem with an analytical solution is then discussed and results compared to the approximate solution. An ablation problem is also analysed and results compared against a numerical solution. In both examples the agreement is excellent. A Stefan problem where the boundary temperature increases exponentially is analysed. This highlights the difficulties that can be encountered with a time dependent boundary condition. Finally, melting with a time-dependent flux is briefly analysed without applying analytical or numerical results to assess the accuracy.
Application of standard and refined heat balance integral methods to one-dimensional Stefan problems
Resumo:
The work in this paper concerns the study of conventional and refined heat balance integral methods for a number of phase change problems. These include standard test problems, both with one and two phase changes, which have exact solutions to enable us to test the accuracy of the approximate solutions. We also consider situations where no analytical solution is available and compare these to numerical solutions. It is popular to use a quadratic profile as an approximation of the temperature, but we show that a cubic profile, seldom considered in the literature, is far more accurate in most circumstances. In addition, the refined integral method can give greater improvement still and we develop a variation on this method which turns out to be optimal in some cases. We assess which integral method is better for various problems, showing that it is largely dependent on the specified boundary conditions.
Resumo:
A method for the measurement of carbamoyl-phosphate synthetase I activity in animal tissues has been developed using the livers of rats under normal and hyperproteic diets. The method is based on the incorporation of 14C-ammonium bicarbonate to carbamoyl-phosphate in the presence of ATP-Mg and N-acetyl-glutamate. The reaction is stopped by chilling, lowering the pH and adding ethanol. Excess bicarbonate is flushed out under a gentle stream of cold CO2. The only label remaining in the medium was that incorporated into carbamoyl-phosphate, since all 14C-CO2 from bicarbonate was eliminated. The method is rapid and requires only a low pressure supply of CO2 to remove the excess substrate. The reaction is linear up to 10 min using homogenate dilutions of 1:20 to 1:200 (w/v). Rat liver activity was in the range of 89±8 nkat/g. Hyperproteic diet resulted in a significant 1.4-fold increase. The design of the method allows for the processing of multiple samples at the same time, and incubation medium manipulation is unnecessary, since the plastic incubation vial and its contents are finally counted together.
Resumo:
A method for the measurement of carbamoyl-phosphate synthetase I activity in animal tissues has been developed using the livers of rats under normal and hyperproteic diets. The method is based on the incorporation of 14C-ammonium bicarbonate to carbamoyl-phosphate in the presence of ATP-Mg and N-acetyl-glutamate. The reaction is stopped by chilling, lowering the pH and adding ethanol. Excess bicarbonate is flushed out under a gentle stream of cold CO2. The only label remaining in the medium was that incorporated into carbamoyl-phosphate, since all 14C-CO2 from bicarbonate was eliminated. The method is rapid and requires only a low pressure supply of CO2 to remove the excess substrate. The reaction is linear up to 10 min using homogenate dilutions of 1:20 to 1:200 (w/v). Rat liver activity was in the range of 89±8 nkat/g. Hyperproteic diet resulted in a significant 1.4-fold increase. The design of the method allows for the processing of multiple samples at the same time, and incubation medium manipulation is unnecessary, since the plastic incubation vial and its contents are finally counted together.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the onedimensional equation is a contraction with respect to Fourier distance in the subcritical case.
Resumo:
The studies of Giacomo Becattini concerning the notion of the "Marshallian industrial district" have led a revolution in the field of economic development around the world. The paper offers an interpretation of the methodology adopted by Becattini. The roots are clearly Marshallian. Becattini proposes a return to the economy as a complex social science that operates in historical time. We adopt a Schumpeterian approach to the method in economic analysis in order to highlight the similarities between the Marshall and Becattini's approach. Finally the paper uses the distinction between logical time, real time and historical time which enable us to study the "localized" economic process in a Becattinian way.