Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities
Contribuinte(s) |
Centre de Recerca Matemàtica |
---|---|
Data(s) |
01/07/2010
|
Resumo |
We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the onedimensional equation is a contraction with respect to Fourier distance in the subcritical case. |
Formato |
18 279167 bytes application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
Centre de Recerca Matemàtica |
Relação |
Prepublicacions del Centre de Recerca Matemàtica;958 |
Direitos |
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/) |
Palavras-Chave | #Desigualtats (Matemàtica) #Equacions diferencials #517 - Anàlisi |
Tipo |
info:eu-repo/semantics/preprint |