Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities


Autoria(s): Calvez, Vincent; Carrillo, José A.
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/07/2010

Resumo

We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the onedimensional equation is a contraction with respect to Fourier distance in the subcritical case.

Formato

18

279167 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/116932

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;958

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Desigualtats (Matemàtica) #Equacions diferencials #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint