29 resultados para high-frequency conversion
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We report millimetre-wave continuum observations of the X-ray binaries Cygnus X-3, SS 433, LSI+61 303, Cygnus X-1 and GRS 1915+105. The observations were carried out with the IRAM 30 m-antenna at 250 GHz (1.25 mm) from 1998 March 14 to March 20. These millimetre measurements are complemented with centimetre observations from the Ryle Telescope, at 15 GHz (2.0 cm) and from the Green Bank Interferometer at 2.25 and 8.3 GHz (13 and 3.6 cm). Both Cygnus X-3 and SS 433 underwent moderate flaring events during our observations, whose main spectral evolution properties are described and interpreted. A significant spectral steepening was observed in both sources during the flare decay, that is likely to be caused by adiabatic expansion, inverse Compton and synchrotron losses. Finally, we also report 250 GHz upper limits for three additional undetected X-ray binary stars: LSI+65 010, LSI+61 235 and X Per.
Resumo:
The decapod burrow Spongeliomorpha sudolica occurs associated with transgressive firmgrounds in the transition between Aragonian continental red beds and Langhian marine units in some of the inner sectors of the Vallès-Penedès Basin. This ichnospecies designates branching burrow systems with scratch marks in the walls produced by marine crustacean decapods. The occurrence of Spongeliomorpha represents an example of theGlossifungites ichnofacies. The several horizons where the traces are found are intercalated with continental red beds a few meters below the main transgressive surface, which is overlain by fossiliferous marine sandstones. The Spongeliomorpha-bioturbated layers record short, high frequency marine flooding surfaces that may be related either to actual sea-level changes or to variations in tectonic subsidence or sediment input. In any case, these flooding events punctuated the early phases of the Langhian transgression in the basin.
Resumo:
This paper proposes a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition at which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and, for embedding, to change the wavelet samples depending on the average of relevant frame¿s samples. The experimental results show that the method has a very high capacity (about 11,000 bps), without significant perceptual distortion (ODG in [¿1 ,0] and SNR about 30dB), and provides robustness against common audio signal processing such as additive noise, filtering, echo and MPEG compression (MP3).
Resumo:
Report for the scientific sojourn at the Department of Micro and Nanotechnology of the Technical University of Denmark from August until December 2006. The research was focused on designing and carrying out a technological process for fabricating high frequency resonators with dielectric solid transducer gaps.
Resumo:
Near linear evolution in Korteweg de Vries (KdV) equation with periodic boundary conditions is established under the assumption of high frequency initial data. This result is obtained by the method of normal form reduction.
Resumo:
Abstract: We scrutinize the realized stock-bond correlation based upon high frequency returns. We use quantile regressions to pin down the systematic variation of the extreme tails over their economic determinants. The correlation dependence behaves differently when the correlation is large negative and large positive. The important explanatory variables at the extreme low quantile are the short rate, the yield spread, and the volatility index. At the extreme high quantile the bond market liquidity is also important. The empirical fi ndings are only partially robust to using less precise measures of the stock-bond correlation. The results are not caused by the recent financial crisis. Keywords: Extreme returns; Financial crisis; Realized stock-bond correlation; Quantile regressions; VIX. JEL Classifi cations: C22; G01; G11; G12
Resumo:
Tant el medi transmissor com els equips d'enregistrament o reproducció de so introdueixen components de soroll d'alta freqüència als senyals. En aquest treball de final de carrera (TFC), s'ha dissenyat i implementat un sistema de filtrat d'àudio encaminat a filtrar aquestes components d'alta freqüència. Donat que l'oïda humana no pot percebre sons de més de 20 kHz, s'ha considerat aquest límit com a freqüència màxima a mantenir en la senyal.S'ha començat estudiant el senyal problema a través del seu espectre de freqüències simulat mitjançant la transformada discreta de Fourier (DFT, en anglès). Una vegada identificades les components d'alta freqüència a atenuar, s'han estudiat les diferents opcions de filtre passabaix.Inicialment, s'ha valorat la possibilitat del disseny de filtres analògics de Butterworth o Chebyshev, o de filtres digitals de tipus IIR (Infinite Impulse Response) basats en els primers. Tanmateix, malgrat assolir les especificacions en magnitud, mitjançant aquest filtres no s'obté una fase lineal en la banda de pas. Per això, s'ha realitzat un disseny de filtre digital tipus FIR (Finite Infinite Response) que compleix estrictament amb les especificacions i presenta una fase lineal en la banda de pas. S'ha simulat el comportament d'aquest filtre amb el senyal problema per tal d'assegurar el seu correcte funcionament.A continuació, s'ha implementat aquest últim disseny en llenguatge C i compilat per un microcontrolador de l'empresa Microchip. S'han realitzat proves de simulació mitjançant Stimulus del programa MPLAB. En definitiva, s'ha dissenyat un filtre passabaix de tipus FIR per acondicionar una senyal d'àudio que posteriorment s'ha implementat en un microcontrolador de Microchip.
Resumo:
Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.
Resumo:
Background: Searching for associations between genetic variants and complex diseases has been a very active area of research for over two decades. More than 51,000 potential associations have been studied and published, a figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies. Even if the number of true associations described so far is high, many of the putative risk variants detected so far have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-wide patterns of replicability of published association studies.Results: We report three main findings. First, contrary to previous results, genes associated to complex diseases present lower degrees of genetic differentiation among human populations than average genome-wide levels. Second, also contrary to previous results, the differences in replicability of disease associated-loci between Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally, highly replicated genes present increased levels of high-frequency derived alleles in European and Asian populations when compared to African populations. Conclusions: Our findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and could cast doubts on the status as false positives of some associations that have failed to replicate across populations.
Resumo:
Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
This poster shows how to efficiently observe high-frequency figures of merit in RF circuits by measuring DC temperature with CMOS-compatible built-in sensors.
Resumo:
Classic climatic models use constitutive laws without any response time. A more realistic approach to the natural processes governing climate dynamics must introduce response time for heat and radiation fluxes. Extended irreversible thermodynamics (EIT) is a good thermodynamical framework for introducing nonclassical constitutive laws. In the present study EIT has been used to analyze a Budyko–Sellers one-dimensional energybalance model developed by G. R. North. The results present self-sustained periodic oscillations when the response time is greater than a critical value. The high-frequency (few kiloyears) damped and nondamped oscillations obtained can be related to abrupt climatic changes without any variation in the external forcing of the system
Resumo:
We present multiepoch Very Large Array (VLA) observations at 1.4 GHz, 4.9 GHz, 8.5 GHz and 14.9 GHz for a sample of eight RS CVn binary systems. Circular polarization measurements of these systems are also reported. Most of the fluxes observed are consistent with incoherent emission from mildly relativistic electrons. Several systems show an increase of the degree of circular polarization with increasing frequency in the optically thin regime, in conflict with predictions by gyrosynchrotron models. We observed a reversal in the sense of circular polarization with increasing frequency in three non-eclipsing systems: EI Eri, DM Uma and HD 8358. We find clear evidence for coherent plasma emission at 1.4 GHz in the quiescent spectrum of HD 8358 during the helicity reversal. The degrees of polarization of the other two systems could also be accounted for by a coherent emission process. The observations of ER Vul revealed two U-shaped flux spectra at the highest frequencies. The U-shape of the spectra may be accounted for by an optically thin gyrosynchrotron source for the low frequency part whereas the high frequency part is dominated by a thermal emission component.
Resumo:
Coulomb suppression of shot noise in a ballistic diode connected to degenerate ideal contacts is analyzed in terms of the correlations taking place between current fluctuations due to carriers injected with different energies. By using Monte Carlo simulations we show that at low frequencies the origin of Coulomb suppression can be traced back to the negative correlations existing between electrons injected with an energy close to that of the potential barrier present in the diode active region and all other carriers injected with higher energies. Correlations between electrons with energy above the potential barrier with the rest of electrons are found to influence significantly the spectra at high frequency in the cutoff region.