29 resultados para discontinuous Galerkin
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Informe de investigación elaborado a partir de una estancia en el Laboratorio de Diseño Computacional en Aeroespacial en el Massachusetts Institute of Technology (MIT), Estados Unidos, entre noviembre de 2006 y agosto de 2007. La aerodinámica es una rama de la dinámica de fluidos referida al estudio de los movimientos de los líquidos o gases, cuya meta principal es predecir las fuerzas aerodinámicas en un avión o cualquier tipo de vehículo, incluyendo los automóviles. Las ecuaciones de Navier-Stokes representan un estado dinámico del equilibrio de las fuerzas que actúan en cualquier región dada del fluido. Son uno de los sistemas de ecuaciones más útiles porque describen la física de una gran cantidad de fenómenos como corrientes del océano, flujos alrededor de una superficie de sustentación, etc. En el contexto de una tesis doctoral, se está estudiando un flujo viscoso e incompresible, solucionando las ecuaciones de Navier- Stokes incompresibles de una manera eficiente. Durante la estancia en el MIT, se ha utilizado un método de Galerkin discontinuo para solucionar las ecuaciones de Navier-Stokes incompresibles usando, o bien un parámetro de penalti para asegurar la continuidad de los flujos entre elementos, o bien un método de Galerkin discontinuo compacto. Ambos métodos han dado buenos resultados y varios ejemplos numéricos se han simulado para validar el buen comportamiento de los métodos desarrollados. También se han estudiado elementos particulares, los elementos de Raviart y Thomas, que se podrían utilizar en una formulación mixta para obtener un algoritmo eficiente para solucionar problemas numéricos complejos.
Resumo:
We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.
Resumo:
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.
Resumo:
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.
Resumo:
We discuss the optimality in L2 of a variant of the Incomplete Discontinuous Galerkin Interior Penalty method (IIPG) for second order linear elliptic problems. We prove optimal estimate, in two and three dimensions, for the lowest order case under suitable regularity assumptions on the data and on the mesh. We also provide numerical evidence, in one dimension, of the necessity of the regularity assumptions.
Resumo:
We consider an exponentially fitted discontinuous Galerkin method for advection dominated problems and propose a block solver for the resulting linear systems. In the case of strong advection the solver is robust with respect to the advection direction and the number of unknowns.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
The main result is a proof of the existence of a unique viscosity solution for Hamilton-Jacobi equation, where the hamiltonian is discontinuous with respect to variable, usually interpreted as the spatial one. Obtained generalized solution is continuous, but not necessarily differentiable.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
Boundary equilibrium bifurcations in piecewise smooth discontinuous systems are characterized by the collision of an equilibrium point with the discontinuity surface. Generically, these bifurcations are of codimension one, but there are scenarios where the phenomenon can be of higher codimension. Here, the possible collision of a non-hyperbolic equilibrium with the boundary in a two-parameter framework and the nonlinear phenomena associated with such collision are considered. By dealing with planar discontinuous (Filippov) systems, some of such phenomena are pointed out through specific representative cases. A methodology for obtaining the corresponding bi-parametric bifurcation sets is developed.
Resumo:
Com a conseqüència directa de la revolució digital, les biblioteques acadèmiques d'avui dia s'enfronten a la competència com a proveïdors d'informació. Utilitzant les corbes S de tecnologia de Richard N. Foster com a model analític, aquest article mostra que les biblioteques acadèmiques estan enmig d'un canvi discontinu perquè qüestionen un seguit d'assumpcions que recolzen l'actual pràctica de la biblioteconomia acadèmica. Els autors desafien aquestes assumpcions i analitzen la manera en que les comunicacions digitals afecten les biblioteques acadèmiques.
Resumo:
El papel de la ciudad en el futuro de la humanidad será transcendente, y es que el crecimiento actual de los espacios urbanos tiende, en general, a desbordar el sitio original de las ciudades, abarcando territorios cada vez más extensos y discontinuos. Y por este motivo es de vital importancia el estudio de la ciudad y de su entorno, el cual es sinónimo de ecosistema urbano. En el siguiente estudio se evalúa el ecosistema urbano de San José, capital de Costa Rica, dando énfasis en las zonas verdes presentes, en las relaciones con los ecosistemas naturales circundantes y como mejorar su capacidad ecológica. Por este motivo se ha analizado un proceso de rearborización en el Parque Metropolitano La Sabana, principal nódulo de carga de la trama urbana. Este esfuerzo de naturación dotará al parque de una mayor naturalización, con lo que se espera un aumento de la biodiversidad faunística. Para conocer estos cambios se crea un programa de monitoreo de aves con su respectivo protocolo.
Resumo:
In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher-Kolmogorov-Petrovskii-Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C2 classical regularity, but also the existence of discontinuous entropy travelling wave solutions.
Resumo:
DisperSATE està basat en una aplicació que podria ser el nucli d'un sistema d'informació d'ajuda al treball en equip a la planta de dispersions polimèriques de BASF a Tarragona, que és una planta química de tipus discontinu
Resumo:
This paper characterizes the relationship between entrepreneurial wealth and aggregate investment under adverse selection. Its main finding is that such a relationship need not be monotonic. In particular, three results emerge from the analysis: (i) pooling equilibria, in which investment is independent of entrepreneurial wealth, are more likely to arise when entrepreneurial wealth is relatively low; (ii) separating equilibria, in which investment is increasing in entrepreneurial wealth, are most likely to arise when entrepreneurial wealth is relatively high and; (iii) for a given interest rate, an increase in entrepreneurial wealth may generate a discontinuous fall in investment.