34 resultados para arithmetic
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
We give a new construction of higher arithmetic Chow groups for quasi-projective arithmetic varieties over a field. Our definition agrees with the higher arithmetic Chow groups defined by Goncharov for projective arithmetic varieties over a field. These groups are the analogue, in the Arakelov context, of the higher algebraic Chow groups defined by Bloch. The degree zero group agrees with the arithmetic Chow groups of Burgos. Our new construction is shown to be a contravariant functor and is endowed with a product structure, which is commutative and associative.
Resumo:
We study the singular Bott-Chern classes introduced by Bismut, Gillet and Soulé. Singular Bott-Chern classes are the main ingredient to define direct images for closed immersions in arithmetic K-theory. In this paper we give an axiomatic definition of a theory of singular Bott-Chern classes, study their properties, and classify all possible theories of this kind. We identify the theory defined by Bismut, Gillet and Soulé as the only one that satisfies the additional condition of being homogeneous. We include a proof of the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions that generalizes a result of Bismut, Gillet and Soulé and was already proved by Zha. This result can be combined with the arithmetic Grothendieck-Riemann-Roch theorem for submersions to extend this theorem to arbitrary projective morphisms. As a byproduct of this study we obtain two results of independent interest. First, we prove a Poincaré lemma for the complex of currents with fixed wave front set, and second we prove that certain direct images of Bott-Chern classes are closed.
Resumo:
We prove a criterion for the irreducibility of an integral group representation p over the fraction field of a noetherian domain R in terms of suitably defined reductions of p at prime ideals of R. As applications, we give irreducibility results for universal deformations of residual representations, with a special attention to universal deformations of residual Galois representations associated with modular forms of weight at least 2.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors.
Resumo:
Polynomial constraint solving plays a prominent role in several areas of hardware and software analysis and verification, e.g., termination proving, program invariant generation and hybrid system verification, to name a few. In this paper we propose a new method for solving non-linear constraints based on encoding the problem into an SMT problem considering only linear arithmetic. Unlike other existing methods, our method focuses on proving satisfiability of the constraints rather than on proving unsatisfiability, which is more relevant in several applications as we illustrate with several examples. Nevertheless, we also present new techniques based on the analysis of unsatisfiable cores that allow one to efficiently prove unsatisfiability too for a broad class of problems. The power of our approach is demonstrated by means of extensive experiments comparing our prototype with state-of-the-art tools on benchmarks taken both from the academic and the industrial world.
Resumo:
En esta investigación se ha estudiado la relación entre dos subsistemas de la memoria de trabajo (buclefonológico y agenda viso-espacial) y el rendimiento en cálculo con una muestra de 94 niños españolesde 7-8 años. Hemos administrado dos pruebas de cálculo diseñadas para este estudio y seis medidassimples de memoria de trabajo (de contenido verbal, numérico y espacial) de la «Batería de Testsde Memoria de Treball» de Pickering, Baqués y Gathercole (1999), y dos pruebas visuales complementarias.Los resultados muestran una correlación importante entre las medidas de contenido verbaly numérico y el rendimiento en cálculo. En cambio, no hemos encontrado ninguna relación con las medidasespaciales. Se concluye, por lo tanto, que en escolares españoles existe una relación importanteentre el bucle fonológico y el rendimiento en tareas de cálculo. En cambio, el rol de la agenda viso-espaciales nulo
Resumo:
Desde que Hitch (1978) publicó el primer estudio sobre el rol de la memoria de trabajo en el cálculo han idoaumentando las investigaciones en este campo. Muchos trabajos han estudiado un único subsistema, pero nuestroobjetivo es identificar qué subsistema de la memoria de trabajo (bucle fonológico, agenda viso-espacial o ejecutivocentral) está más implicado en el cálculo mental. Para ello hemos realizado un estudio correlacional en el quehemos administrado dos pruebas aritméticas y nueve pruebas de la “Bateria de Test de Memòria de Treball” dePickering, Baqués y Gathercole (1999) a una muestra de 94 niños españoles de 7-8 años. Nuestros resultadosindican que el bucle fonológico y sobretodo el ejecutivo central inciden de forma estadísticamente significativa enel rendimiento aritmético
Resumo:
In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of this results comes from the study of covariant arithmetic Chow groups. The semi-purity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.
Resumo:
La tecnologia GPGPU permet paral∙lelitzar càlculs executant operacions aritmètiques en els múltiples processadors de que disposen els xips gràfics. S'ha fet servir l'entorn de desenvolupament CUDA de la companyia NVIDIA, que actualment és la solució GPGPU més avançada del mercat. L'algorisme de neuroimatge implementat pertany a un estudi VBM desenvolupat amb l'eina SPM. Es tracta concretament del procés de segmentació d'imatges de ressonància magnètica cerebrals, en els diferents teixits dels quals es composa el cervell: matèria blanca, matèria grisa i líquid cefaloraquidi. S'han implementat models en els llenguatges Matlab, C i CUDA, i s'ha fet un estudi comparatiu per plataformes hardware diferents.
Resumo:
Assume that the problem Qo is not solvable in polynomial time. For theories T containing a sufficiently rich part of true arithmetic we characterize T U {ConT} as the minimal extension of T proving for some algorithm that it decides Qo as fast as any algorithm B with the property that T proves that B decides Qo. Here, ConT claims the consistency of T. Moreover, we characterize problems with an optimal algorithm in terms of arithmetical theories.
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
The objective the present research is try to find some control design strategies, which must be effective and closed to the real operation conditions. As a novel contribution to structural control strategies, the theories of Interval Modal Arithmetic, Backstepping Control and QFT (Qualitative Feedback Theory) will be studied. The steps to follow are to develop first new controllers based on the above theories and then to implement the proposed control strategies to different kind of structures. The report is organized as follows. The Chapter 2 presents the state-of-the-art on structural control systems. The chapter 3 presents the most important open problems found in field of structural control. The exploratory work made by the author, research proposal and working plan are given in the Chapter 4