50 resultados para Zero sets of bivariate polynomials
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.
Resumo:
The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomi- als for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a SzegÄo measure on the unit circumference is perturbed by an arbitrary measure inside the unit disk and an arbitrary Blaschke sequence of point masses outside the unit disk.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.
Resumo:
This paper studies the limits of discrete time repeated games with public monitoring. We solve and characterize the Abreu, Milgrom and Pearce (1991) problem. We found that for the "bad" ("good") news model the lower (higher) magnitude events suggest cooperation, i.e., zero punishment probability, while the highrt (lower) magnitude events suggest defection, i.e., punishment with probability one. Public correlation is used to connect these two sets of signals and to make the enforceability to bind. The dynamic and limit behavior of the punishment probabilities for variations in ... (the discount rate) and ... (the time interval) are characterized, as well as the limit payo¤s for all these scenarios (We also introduce uncertainty in the time domain). The obtained ... limits are to the best of my knowledge, new. The obtained ... limits coincide with Fudenberg and Levine (2007) and Fudenberg and Olszewski (2011), with the exception that we clearly state the precise informational conditions that cause the limit to converge from above, to converge from below or to degenerate. JEL: C73, D82, D86. KEYWORDS: Repeated Games, Frequent Monitoring, Random Pub- lic Monitoring, Moral Hazard, Stochastic Processes.
Resumo:
As stated in Aitchison (1986), a proper study of relative variation in a compositional data set should be based on logratios, and dealing with logratios excludes dealing with zeros. Nevertheless, it is clear that zero observations might be present in real data sets, either because the corresponding part is completelyabsent –essential zeros– or because it is below detection limit –rounded zeros. Because the second kind of zeros is usually understood as “a trace too small to measure”, it seems reasonable to replace them by a suitable small value, and this has been the traditional approach. As stated, e.g. by Tauber (1999) and byMartín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000), the principal problem in compositional data analysis is related to rounded zeros. One should be careful to use a replacement strategy that does not seriously distort the general structure of the data. In particular, the covariance structure of the involvedparts –and thus the metric properties– should be preserved, as otherwise further analysis on subpopulations could be misleading. Following this point of view, a non-parametric imputation method isintroduced in Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000). This method is analyzed in depth by Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) where it is shown that thetheoretical drawbacks of the additive zero replacement method proposed in Aitchison (1986) can be overcome using a new multiplicative approach on the non-zero parts of a composition. The new approachhas reasonable properties from a compositional point of view. In particular, it is “natural” in the sense thatit recovers the “true” composition if replacement values are identical to the missing values, and it is coherent with the basic operations on the simplex. This coherence implies that the covariance structure of subcompositions with no zeros is preserved. As a generalization of the multiplicative replacement, in thesame paper a substitution method for missing values on compositional data sets is introduced
Resumo:
In this paper we deal with the identification of dependencies between time series of equity returns. Marginal distribution functions are assumed to be known, and a bivariate chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas are fitted and compared with Spanish stock market data. The results show that the t-copula generally outperforms other dependence structures, and highlight the difficulty in adjusting a significant number of bivariate data series
Resumo:
In this paper we deal with the identification of dependencies between time series of equity returns. Marginal distribution functions are assumed to be known, and a bivariate chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas are fitted and compared with Spanish stock market data. The results show that the t-copula generally outperforms other dependence structures, and highlight the difficulty in adjusting a significant number of bivariate data series
Resumo:
Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.
Resumo:
Informe de investigación elaborado a partir de una estancia en el Laboratorio de Diseño Computacional en Aeroespacial en el Massachusetts Institute of Technology (MIT), Estados Unidos, entre noviembre de 2006 y agosto de 2007. La aerodinámica es una rama de la dinámica de fluidos referida al estudio de los movimientos de los líquidos o gases, cuya meta principal es predecir las fuerzas aerodinámicas en un avión o cualquier tipo de vehículo, incluyendo los automóviles. Las ecuaciones de Navier-Stokes representan un estado dinámico del equilibrio de las fuerzas que actúan en cualquier región dada del fluido. Son uno de los sistemas de ecuaciones más útiles porque describen la física de una gran cantidad de fenómenos como corrientes del océano, flujos alrededor de una superficie de sustentación, etc. En el contexto de una tesis doctoral, se está estudiando un flujo viscoso e incompresible, solucionando las ecuaciones de Navier- Stokes incompresibles de una manera eficiente. Durante la estancia en el MIT, se ha utilizado un método de Galerkin discontinuo para solucionar las ecuaciones de Navier-Stokes incompresibles usando, o bien un parámetro de penalti para asegurar la continuidad de los flujos entre elementos, o bien un método de Galerkin discontinuo compacto. Ambos métodos han dado buenos resultados y varios ejemplos numéricos se han simulado para validar el buen comportamiento de los métodos desarrollados. También se han estudiado elementos particulares, los elementos de Raviart y Thomas, que se podrían utilizar en una formulación mixta para obtener un algoritmo eficiente para solucionar problemas numéricos complejos.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
It has been shown that bilinguals are disadvantaged on some language production tasks when compared to monolinguals. The present study investigated the effects of bilingualism on lexical retrieval in single and multi-word utterances. To this purpose, we tested three groups of 35 participants each (Spanish monolinguals, highly proficient Spanish-Catalan and Catalan-Spanish bilinguals) in two sets of picture naming experiments. In the first one, participants were asked to name black-and-white object drawings by single words. In the second one, participants had to name colored pictures with determiner adjectival noun phrases (NP) like “the red car”. In both sets of experiments, bilinguals were slower than monolinguals, even when naming in their dominant language. We also examined the articulatory durations of both single word and NP productions for this bilingual disadvantage. Furthermore, response onset times and durations of all groups in both experiments were affected by lexical variables of the picture names. These results are consistent with previous studies (Ivanova & Costa, 2008, Gollan et al., 2005) showing a bilingual disadvantage in single word production and extend these findings to multiword-utterances and response durations. They also support the claim that articulatory processes are influenced by lexical variables.
Resumo:
This paper provides a natural way of reaching an agreement between two prominent proposals in a bankruptcy problem. Particularly, using the fact that such problems can be faced from two different points of views, awards and losses, we justify the average of any pair of dual bankruptcy rules through the definition a double recursive process. Finally, by considering three posible sets of equity principles that a particular society may agree on, we retrieve the average of old and well known bankruptcy rules, the Constrained Equal Awards and the Constrained Equal Losses rules, Piniles’ rule and its dual rule, and the Constrained Egalitarian rule and its dual rule. Keywords: Bankruptcy problems, Midpoint, Bounds, Duality, Recursivity. JEL classification: C71, D63, D71.