114 resultados para Volatility of volatility
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper provides empirical evidence that continuous time models with one factor of volatility, in some conditions, are able to fit the main characteristics of financial data. It also reports the importance of the feedback factor in capturing the strong volatility clustering of data, caused by a possible change in the pattern of volatility in the last part of the sample. We use the Efficient Method of Moments (EMM) by Gallant and Tauchen (1996) to estimate logarithmic models with one and two stochastic volatility factors (with and without feedback) and to select among them.
Resumo:
Using a suitable Hull and White type formula we develop a methodology to obtain asecond order approximation to the implied volatility for very short maturities. Using thisapproximation we accurately calibrate the full set of parameters of the Heston model. Oneof the reasons that makes our calibration for short maturities so accurate is that we alsotake into account the term-structure for large maturities. We may say that calibration isnot "memoryless", in the sense that the option's behavior far away from maturity doesinfluence calibration when the option gets close to expiration. Our results provide a wayto perform a quick calibration of a closed-form approximation to vanilla options that canthen be used to price exotic derivatives. The methodology is simple, accurate, fast, andit requires a minimal computational cost.
Resumo:
This paper presents a two-factor (Vasicek-CIR) model of the term structure of interest rates and develops its pricing and empirical properties. We assume that default free discount bond prices are determined by the time to maturity and two factors, the long-term interest rate and the spread. Assuming a certain process for both factors, a general bond pricing equation is derived and a closed-form expression for bond prices is obtained. Empirical evidence of the model's performance in comparisson with a double Vasicek model is presented. The main conclusion is that the modeling of the volatility in the long-term rate process can help (in a large amount) to fit the observed data can improve - in a reasonable quantity - the prediction of the future movements in the medium- and long-term interest rates. However, for shorter maturities, it is shown that the pricing errors are, basically, negligible and it is not so clear which is the best model to be used.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be neither a difussion, nor a Markov process as the examples in section 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Resumo:
We show that the Heston volatility or equivalently the Cox-Ingersoll-Ross process is Malliavin differentiable and give an explicit expression for the derivative. This result assures the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model and the Cox-Ingersoll-Ross model for interest rates.
Resumo:
In this paper, we scrutinize the cross-sectional relation between idiosyncratic volatility and stock returns. As a novelty, the idiosyncratic volatility is obtained by conditioning upon macro-finance factors as well as upon traditional asset pricing factors. The macro-finance factors are constructed from a large pool of macroeconomic and financial variables. Cleaning for macro-finance e§ects reverses the puzzling negative relation between returns and idiosyncratic volatility documented previously. Portfolio analysis shows that the effects from macro-finance factors are economically strong. The relation between idiosyncratic volatility and returns does not vary with the NBER business cycles. The empirical results are highly robust. Keywords: Idiosyncratic volatility puzzle; Macro-finance predictors; Factor analysis; Business cycle. JEL Classifications: G12; G14
Resumo:
This paper evaluates the forecasting performance of a continuous stochastic volatility model with two factors of volatility (SV2F) and compares it to those of GARCH and ARFIMA models. The empirical results show that the volatility forecasting ability of the SV2F model is better than that of the GARCH and ARFIMA models, especially when volatility seems to change pattern. We use ex-post volatility as a proxy of the realized volatility obtained from intraday data and the forecasts from the SV2F are calculated using the reprojection technique proposed by Gallant and Tauchen (1998).
Resumo:
We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.
Resumo:
Introducing bounded rationality in a standard consumption-based asset pricing model with time separable preferences strongly improves empirical performance. Learning causes momentum and mean reversion of returns and thereby excess volatility, persistence of price-dividend ratios, long-horizon return predictability and a risk premium, as in the habit model of Campbell and Cochrane (1999), but for lower risk aversion. This is obtained, even though our learning scheme introduces just one free parameter and we only consider learning schemes that imply small deviations from full rationality. The findings are robust to the learning rule used and other model features. What is key is that agents forecast future stock prices using past information on prices.
Resumo:
I use a multi-layer feedforward perceptron, with backpropagation learning implemented via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over low-strikes by training the network on parametric prices.
Resumo:
Among the underlying assumptions of the Black-Scholes option pricingmodel, those of a fixed volatility of the underlying asset and of aconstantshort-term riskless interest rate, cause the largest empirical biases. Onlyrecently has attention been paid to the simultaneous effects of thestochasticnature of both variables on the pricing of options. This paper has tried toestimate the effects of a stochastic volatility and a stochastic interestrate inthe Spanish option market. A discrete approach was used. Symmetricand asymmetricGARCH models were tried. The presence of in-the-mean and seasonalityeffectswas allowed. The stochastic processes of the MIBOR90, a Spanishshort-terminterest rate, from March 19, 1990 to May 31, 1994 and of the volatilityofthe returns of the most important Spanish stock index (IBEX-35) fromOctober1, 1987 to January 20, 1994, were estimated. These estimators wereused onpricing Call options on the stock index, from November 30, 1993 to May30, 1994.Hull-White and Amin-Ng pricing formulas were used. These prices werecomparedwith actual prices and with those derived from the Black-Scholesformula,trying to detect the biases reported previously in the literature. Whereasthe conditional variance of the MIBOR90 interest rate seemed to be freeofARCH effects, an asymmetric GARCH with in-the-mean and seasonalityeffectsand some evidence of persistence in variance (IEGARCH(1,2)-M-S) wasfoundto be the model that best represent the behavior of the stochasticvolatilityof the IBEX-35 stock returns. All the biases reported previously in theliterature were found. All the formulas overpriced the options inNear-the-Moneycase and underpriced the options otherwise. Furthermore, in most optiontrading, Black-Scholes overpriced the options and, because of thetime-to-maturityeffect, implied volatility computed from the Black-Scholes formula,underestimatedthe actual volatility.
Resumo:
What determined the volatility of asset prices in Germany between thewars? This paper argues that the influence of political factors has beenoverstated. The majority of events increasing political uncertainty hadlittle or no effect on the value of German assets and the volatility ofreturns on them. Instead, it was inflation (and the fear of it) that islargely responsible for most of the variability in asset returns.
Resumo:
We see that the price of an european call option in a stochastic volatilityframework can be decomposed in the sum of four terms, which identifythe main features of the market that affect to option prices: the expectedfuture volatility, the correlation between the volatility and the noisedriving the stock prices, the market price of volatility risk and thedifference of the expected future volatility at different times. We alsostudy some applications of this decomposition.