36 resultados para Trp-containing peptides
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Cyclic peptide architectures can be easily synthesized from cysteine-containing peptides with appending maleimides, free or protected, through an intramolecular Michael-type reaction. After peptide assembly, the peptide can cyclize either during the trifluoroacetic acid treatment, if the maleimide is not protected, or upon deprotection of the maleimide. The combination of free and protected maleimide moieties and two orthogonally protected cysteines gives access to structurally different bicyclic peptides with isolated or fused cycles.
Resumo:
Herein is described the synthesis of several analogs of the natural product IB-01211 from concatenated azoles, via a biomimetic pathway based on cyclization-oxidation of serine containing peptides combined with the Hantzsch synthesis. The macrocyclization of rigid peptide compounds 1 and 2 to give IB-01211 and its epimer 12b was explored, and the results are compared here to those previously obtained for the macrocyclization of more flexible structures in the syntheses of YM-216391, telomestatin, and IB-01211. Lastly, the preliminary results of anti-tumor activity screening of the synthesized analogs are discussed.
Resumo:
The protection of arginine (Arg) side chains is a crucial issue in peptide chemistry because of the propensity of the basic guanidinium group to produce side reactions. Currently, sulfonyl-type protecting groups, such as 2,2,5,7,8-pentamethylchroman (Pmc) and 2,2,4,6,7-pentamethyldihydrobenzofurane (Pbf), are the most widely used for this purpose. Nevertheless, Arg side chain protection remains problematic as a result of the acid stability of these two compounds. This issue is even more relevant in Arg-rich sequences, acid-sensitive peptides and large-scale syntheses. The 1,2-dimethylindole-3-sulfonyl (MIS) group is more acid-labile than Pmc and Pbf and can therefore be a better option for Arg side chain protection. In addition, MIS is compatible with tryptophan-containing peptides.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Trp(Nps)-Lys-NH2 derivatives, bearing alkyl or guanidine groups either at the N-terminus or on the Lys side-chain or at both positions were conveniently prepared on solid-phase and evaluated as TRPV1 channel antagonists.
Resumo:
Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, wedescribe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptidesKKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol(cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followedby coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtainedin high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteriaand screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteriaanalyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively,were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest thatpreassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of theactivity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassemblyis critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect
Resumo:
El principal problema de les teràpies actuals contra el càncer es la baixa especificitat envers les cèl•lules tumorals, cosa que comporta gran quantitat d’efectes secundaris. Per això es important el desenvolupament de nous tipus de teràpies i sistemes d’alliberament efectius per als fàrmacs ja existents al mercat. En la immunoteràpia contra el càncer es pretén estimular el sistema immunològic per a eliminar les cèl•lules canceroses de manera selectiva. En aquest projecte s’han sintetitzat derivats de l’antigen peptídic de melanoma NY-ESO1 i s’ha estudiat la seva capacitat per a estimular el sistema immunològic com a vacunes contra el càncer. També s’han encapsulat el antígens peptídics en liposomes com a adjuvants i sistemes d’alliberament. De totes les variants peptídiques la que resultà més immunogènica fou la que contenia el grup palmitoil i el fragment toxoide tetànic en la seva estructura. La utilització de liposomes com a sistema adjuvant sembla una estratègia interessant per al disseny de vacunes contra el càncer donat que l’encapsulació del pèptid en liposomes va augmentar notablement la resposta immunològica de l’antigen. Per altra banda, s’han desenvolupat dendrímers basats en polietilenglicol com a sistemes alliberadors de fàrmacs per al tractament de tumors. El polietilenglicol és àmpliament utilitzat com a sistema d’alliberament de fàrmacs degut a les seves interessants propietats, augment de la solubilitat i dels temps de residència en plasma, entre d’altres. La metodologia química descrita permet la diferenciació controlada de varies posicions en la superfície del dendrímer a més del creixement del dendrímer fins a una segona generació. S’ha sintetitzat la primera generació del dendrímer contenint el fàrmac antitumoral 5-fluorouracil i s’han realitzat estudis de citotoxicitat comprovant que l’activitat del nanoconjugat és del mateix ordre de magnitud que el 5-fluorouracil sense conjugar.
Resumo:
Low concentrations of elements in geochemical analyses have the peculiarity of beingcompositional data and, for a given level of significance, are likely to be beyond thecapabilities of laboratories to distinguish between minute concentrations and completeabsence, thus preventing laboratories from reporting extremely low concentrations of theanalyte. Instead, what is reported is the detection limit, which is the minimumconcentration that conclusively differentiates between presence and absence of theelement. A spatially distributed exhaustive sample is employed in this study to generateunbiased sub-samples, which are further censored to observe the effect that differentdetection limits and sample sizes have on the inference of population distributionsstarting from geochemical analyses having specimens below detection limit (nondetects).The isometric logratio transformation is used to convert the compositional data in thesimplex to samples in real space, thus allowing the practitioner to properly borrow fromthe large source of statistical techniques valid only in real space. The bootstrap method isused to numerically investigate the reliability of inferring several distributionalparameters employing different forms of imputation for the censored data. The casestudy illustrates that, in general, best results are obtained when imputations are madeusing the distribution best fitting the readings above detection limit and exposes theproblems of other more widely used practices. When the sample is spatially correlated, itis necessary to combine the bootstrap with stochastic simulation
Resumo:
The failure mechanism of a voided CFRP 0-90° cross-ply laminate under tensile loads applied in one direction was studied in this Final Degree Project. For this purpose, voided coupons were manufactured for being tested and a FEA was done. In both investigations, voids were placed in 90º and 0º direction, in order to understand the void location influence. On the one hand, the behaviour of the voided laminates was investigated through a FEM in order to preview the stress distribution within the material. On the other hand, voided specimens where manufactured by applying blowing agent in between the inner layers. These specimens were tested by a quasi-static step wise tensile test where data showing its real behaviour was collected. Specimens were X-rayed after each step of the test in order to investigate the failure mechanism of the composite. Data from the test was studied so that relations such as strength of the laminates, crack density per stress, void length per first crack at the void and void area per first crack at the specimen could be characterized
Resumo:
The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1–2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides
Resumo:
L’esfingosina-1-fosfat (S1P) és un lípid bioactiu amb funcions crucials en la biologia cel•lular. Entre aquestes, la seva activitat mitogènica i citoprotectora són les més estudiades. L’S1P és catabolitzada intracel•lularment mitjançant l’esfingosina-1-fosfat liasa (SGPL1) per generar (E)-2-hexadecenal i fosforiletanolamina. L’objectiu d’aquest projecte és explorar si l’(E)-2-hexadecenal és realment un catabòlit innocu o bé si, pel seu caràcter acceptor de Michael, és capaç de reaccionar amb pèptids o proteïnes específics. Aquesta interacció podria traduïr-se en funcions biològiques determinades, algunes de les quals són possiblement atribuïdes a l’esfingosina-1-fosfat com a tal. Per poder explorar el potencials adductes proteïcs amb l’aldehid, s’han emprat, sobre cèl•lules HeLa que sobreexpressen SGPL1, sondes anàlegs a esfingosina i esfinganina (i els seus derivats fosforil•lats) que presenten una funció azida en la posició omega de la cadena esfingoide. Aquestes, mitjançant química click sense coure, s’han fet reaccionar amb una molècula que presenta un dibenzociclooctí unit a biotina DBCObiotina). Després d’aïllar les proteïnes així biotinilades amb una reïna d’estreptavidina, aquestes es van separar per electroforesi. Les bandes proteïques observades es van extreure del gel i es van digerir amb tripsina, per posteriorment analitzar els pèptids per MALDI-TOF, el que permetria l’identificació de proteïnes a partir de “peptide mass fingerprinting”. Lamentablement, a la fi d’aquest contracte, encara no s’ha pogut identificar cap proteïna que s’uneixi a l’aldehid alliberat per la reacció de l’esfingosina-1- fosfat liasa. No obstant, durant aquest temps s’ha millorat el mètode per detectar aquests adductes proteïcs. Per això, si la recerca continua en aquesta línia, properament es podria saber amb certesa si existeixen o no aquestes interaccions covalents entre determinades proteïnes i l’(E)-2-hexadecenal.