32 resultados para TEMPERATURE-DEPENDENCE
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The magnetization process of Co/Al oxide/Py trilayers and its evolution with the temperature have been analyzed. The particular behavior of the Co layers, including the shift of the hysteresis loops and a coercivity increase with the decrease of temperature, is related with the apparition of a CoO layer at the Co/Al-oxide interface.
Resumo:
Magnetization versus temperature in the temperature interval 2-200 K was measured for amorphous alloys of three different compositions: Fe 81.5B14.5Si4, Fe40Ni38 Mo4B18, and Co70Fe5Ni 2Mo3B5Si15. The measurements were performed by means of a SQUID (superconducting quantum interference device) magnetometer. The aim was to extract information about the different mechanisms contributing to thermal demagnetization. A powerful data analysis technique based on successive minimization procedures has demonstrated that Stoner excitations of the strong ferromagnetic type play a significant role in the Fe-Ni alloy studied. The Fe-rich and Co-rich alloys do not show a measurable contribution from single-particle excitations.
Resumo:
Soil respiration (SR) is a major component of ecosystems' carbon cycles and represents the second largest CO2 flux in the terrestrial biosphere. Soil temperature is considered to be the primary abiotic control on SR, whereas soil moisture is the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that makes soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under the projected future increase in droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is controlled by soil moisture rather than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from the riverside moving uphill and showed a pronounced seasonality. SR rates showed significant differences between tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR, respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.
Resumo:
We report on measurements of the adiabatic second-order elastic constants of the off-stoichiometric Ni54Mn23Al23 single-crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behavior of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.
Resumo:
The transport and magnetotransport properties of the metallic and ferromagnetic SrRuO3 (SRO) and the metallic and paramagnetic LaNiO3 (LNO) epitaxial thin films have been investigated in fields up to 55 T at temperatures down to 1.8 K . At low temperatures both samples display a well-defined resistivity minimum. We argue that this behavior is due to the increasing relevance of quantum corrections to the conductivity (QCC) as temperature is lowered; this effect being particularly relevant in these oxides due to their short mean free path. However, it is not straightforward to discriminate between contributions of weak localization and renormalization of electron-electron interactions to the QCC through temperature dependence alone. We have taken advantage of the distinct effect of a magnetic field on both mechanisms to demonstrate that in ferromagnetic SRO the weak-localization contribution is suppressed by the large internal field leaving only renormalized electron-electron interactions, whereas in the nonmagnetic LNO thin films the weak-localization term is relevant.
Resumo:
The heat exchanged at the low-temperature first-order magnetostructural transition is directly measured in Gd5Ge4 . Results show that the origin and the temperature dependence of the heat exchanged varies with the reversible/irreversible character of the first-order transition. In the reversible regime, the heat exchanged by the sample is mostly due to the latent heat at the transition and decreases with decreasing temperature, while in the irreversible regime, the heat is irreversibly dissipated and increases strongly with decreasing temperature, reaching a value of 237 J/kg at 4 K.
Resumo:
Neutron-scattering techniques have been used to study the premartensitic state of a family of Cu-Al-Be alloys, which transform from the bcc phase to an 18R martensitic structure. We find that the phonon modes of the TA2[110] branch have very low energies with anomalous temperature dependence. A slight anomaly at q=2/3 was observed; this anomaly, however, does not change significantly with temperature. No elastic peaks, related to the martensite structure, were found in the premartensitic state of these alloys. The results are compared with measurements, performed under the same instrumental conditions, on two Cu-Al-Ni and a Cu-Zn-Al martensitic alloy.
Resumo:
We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structural transitions.
Resumo:
Bubble formation in solutions of 3He and 4He is studied within a density-functional approach. In particular, the temperature dependence of the cavitation pressure for different 3He concentrations is calculated at low temperatures and compared to that of pure 4He. The presence of Andreev states lowers the surface tension and, consequently, nucleation barriers are drastically reduced. This fact means that even at low 3He concentrations the cavitation process takes place at higher pressures than the spinodal pressure, which is not the case for pure 4He.
Resumo:
We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.
Resumo:
The thermodynamic functions of a Fermi gas with spin population imbalance are studied in the temperature-asymmetry plane in the BCS limit. The low-temperature domain is characterized by an anomalous enhancement of the entropy and the specific heat above their values in the unpaired state, decrease of the gap and eventual unpairing phase transition as the temperature is lowered. The unpairing phase transition induces a second jump in the specific heat, which can be measured in calorimetric experiments. While the superfluid is unstable against a supercurrent carrying state, it may sustain a metastable state if cooled adiabatically down from the stable high-temperature domain. In the latter domain the temperature dependence of the gap and related functions is analogous to the predictions of the BCS theory.
Resumo:
A general and straightforward analytical expression for the defect-state-energy distribution of a-Si:H is obtained through a statistical-mechanical treatment of the hydrogen occupation for different sites. Broadening of available defect energy levels (defect pool) and their charge state, both in electronic equilibrium and nonequilibrium steady-state situations, are considered. The model gives quantitative results that reproduce different defect phenomena, such as the thermally activated spin density, the gap-state dependence on the Fermi level, and the intensity and temperature dependence of light-induced spin density. An interpretation of the Staebler-Wronski effect is proposed, based on the ''conversion'' of shallow charged centers to neutrals near the middle of the gap as a consequence of hydrogen redistribution.
Resumo:
We report a systematic study of the low-temperature electrical conductivity in a series of SrRuO3 epitaxial thin films. At relatively high temperature the films display the conventional metallic behavior. However, a well-defined resistivity minimum appears at low temperature. This temperature dependence can be well described in a weak localization scenario: the resistivity minimum arising from the competition of electronic self-interference effects and the normal metallic character. By appropriate selection of the film growth conditions, we have been able to modify the mean-free path of itinerant carriers and thus to tune the relative strength of the quantum effects. We show that data can be quantitatively described by available theoretical models.
Resumo:
We report on the magneto-optical measurements of an epitaxial SrRuO3 film grown on SrTiO3 (0 0 1), which previously was determined to be single domain orientated by x-ray diffraction and Raman spectroscopy techniques. Our experiments reveal a large Kerr rotation, which reaches a maximum value of about 0.5° at low temperature. By measuring magnetic hysteresis loops at different temperatures, we determined the temperature dependence of the Kerr rotation in the polar configuration. Values of the anisotropic magnetoresistance ~ 20% have been measured. These values are remarkably higher than those of other metallic oxides such as manganites. This striking difference can be attributed to the strong spin-orbit interaction of the Ru 4d ion in the SrRuO3 compound.