50 resultados para Spectrum analysis Instruments Calibration

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plume generated by ablation of hydroxyapatite targets under ArF excimer laser irradiation has been investigated by means of fast intensified CCD-imaging and optical emission spectroscopy. Results have shown that the plume splits into two plasma clouds as it expands. Time and spatial resolved spectra have revealed that under the experiment conditions emission is mostly due to calcium neutral atoms and calcium oxide molecular radicals. Imaging of the plume with the aid of bandpass filters has demonstrated that the emissive species in the larger and faster plasma cloud are calcium neutral atoms, whereas in the smaller and slower one they are calcium oxide molecular radicals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a model for a damped spring-mass system that is a strongly damped wave equation with dynamic boundary conditions. In a previous paper we showed that for some values of the parameters of the model, the large time behaviour of the solutions is the same as for a classical spring-mass damper ODE. Here we use spectral analysis to show that for other values of the parameters, still of physical relevance and related to the effect of the spring inner viscosity, the limit behaviours are very different from that classical ODE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, one of the most important challenges to enhance the efficiency of thin film silicon solar cells is to increase the short circuit intensity by means of optical confinement methods, such as textured back-reflector structures. In this work, two possible textured structures to be used as back reflectors for n-i-p solar cells have been optically analyzed and compared to a smooth one by using a system which is able to measure the angular distribution function (ADF) of the scattered light in a wide spectral range (350-1000 nm). The accurate analysis of the ADF data corresponding to the reflector structures and to the μc-Si:H films deposited onto them allows the optical losses due to the reflector absorption and its effectiveness in increasing light absorption in the μc-Si:H layer, mainly at long wavelengths, to be quantified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies of relativistic jet sources in the Galaxy, also known as microquasars, have been very useful in trying to understand the accretion/ejection processes that take place near compact objects. However, the number of sources involved in such studies is still small. In an attempt to increase the number of known microquasars we have carried out a search for new Radio Emitting X-ray Binaries (REXBs). These sources are the ones to be observed later with VLBI techniques to unveil their possible microquasar nature. To this end, we have performed a cross-identification between the X-ray ROSAT all sky survey Bright Source Catalog (RBSC) and the radio NRAO VLA Sky Survey (NVSS) catalogs under very restrictive selection criteria for sources with |b|<5 degrees. We have also conducted a deep observational radio and optical study for six of the selected candidates. At the end of this process two of the candidates appear to be promising, and deserve additional observations aimed to confirm their proposed microquasar nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present optical spectroscopy of MWC 656 and MWC 148, the proposed optical counterparts of the gamma-ray sources AGL J2241+4454 and HESS J0632+0 57, respectively. The main parameters of the Halpha emission line (EW, FWHM and centroid velocity) in these stars are modulated on the proposed orbital periods of 60.37 and 321 days, respectively. These modulations are likely produced by the resonant interaction of the Be discs with compact stars in eccentric orbits. We also present radial velocity curves of the optical stars folded on the above periods and obtain the first orbital elements of the two gamma-ray sources thus confirming their binary nature. Our orbital solution support eccentricities e~0.4 and 0.83+-0.08 for MWC 656 and MWC 148, respectively. Further, our orbital elements imply that the X-ray outbursts in HESS J0632+057/MWC 148 are delayed ~0.3 orbital phases after periastron passage, similarly to the case of LS I +61 303. In addition, the optical photometric light curve maxima in AGL J2241+4454/MWC 656 occur ~0.25 phases passed periastron, similar to what is seen in LS I +61 303. We also find that the orbital eccentricity is correlated with orbital period for the known gamma-ray binaries. This is explained by the fact that small stellar separations are required for the efficient triggering of VHE radiation. Another correlation between the EW of Halpha and orbital period is also observed, similarly to the case of Be/X-ray binaries. These correlations are useful to provide estimates of the key orbital parameters Porb and e from the Halpha line in future Be gamma-ray binary candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente trabajo se hace una revision bibliografica de los distintos métodos de identificación de Caolinita y Clorita en mezclas naturales y artificiales, valorando la distinta problematica que presentan cada uno de ellos, y aplicandolos a muestras patrones y mezclas naturales que presentan esta problematica a fin de obtener una mejor valoraci6n de los distintos métodos expuestos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.