91 resultados para Solutions de rang k
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
Las capas de acoplamiento son un elemento clave en los dispositivos BAW CRF. El factor de acoplamiento K de estas capas permite el diseño de una determinada respuesta. Debido al limitado número de materiales con las que implementarlas, las soluciones que utilizan capas de λ/4 ofrecen un rango discreto de K. Por otra parte, el reflector de Bragg es un mecanismo de aislamiento mecánico entre el sustrato y la estructura BAW que está formado por capas alternas de alta y baja impedancia acústica de λ/4. El problema que presenta es la reducción del factor de calidad asociado a las pérdidas producida por las ondas shear. Este proyecto presenta un método para la obtención de un rango continuo de factores de acoplamiento y estudia la mejora del factor de calidad de las estructuras BAW con reflector de Bragg partiendo de dos materiales con alta y baja impedancia acústica.
Resumo:
The classical theory of collision induced emission (CIE) from pairs of dissimilar rare gas atoms was developed in Paper I [D. Reguera and G. Birnbaum, J. Chem. Phys. 125, 184304 (2006)] from a knowledge of the straight line collision trajectory and the assumption that the magnitude of the dipole could be represented by an exponential function of the inter-nuclear distance. This theory is extended here to deal with other functional forms of the induced dipole as revealed by ab initio calculations. Accurate analytical expression for the CIE can be obtained by least square fitting of the ab initio values of the dipole as a function of inter-atomic separation using a sum of exponentials and then proceeding as in Paper I. However, we also show how the multi-exponential fit can be replaced by a simpler fit using only two analytic functions. Our analysis is applied to the polar molecules HF and HBr. Unlike the rare gas atoms considered previously, these atomic pairs form stable bound diatomic molecules. We show that, interestingly, the spectra of these reactive molecules are characterized by the presence of multiple peaks. We also discuss the CIE arising from half collisions in excited electronic states, which in principle could be probed in photo-dissociation experiments.
Resumo:
Some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with p-Laplacian
Resumo:
Using the nonsmooth variant of minimax point theorems, some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with p-Laplacian.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider a two dimensional lattice coupled with nearest neighbor interaction potential of power type. The existence of infinite many periodic solutions is shown by using minimax methods.
Resumo:
We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.
Resumo:
We consider nonlinear elliptic problems involving a nonlocal operator: the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions. For positive solutions to problems with power nonlinearities, we establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type. In addition, among other results, we prove a symmetry theorem of Gidas-Ni-Nirenberg type.
Resumo:
This Working Paper was presented at the international workshop "Game Theory in International Relations at 50", organized and coordinated by Professor Jacint Jordana and Dr. Yannis Karagiannis at the Institut Barcelona d'Estudis Internacionals on May 22, 2009. The day-long Workshop was inspired by the desire to honour the ground-breaking work of Professor Thomas Schelling in 1959-1960, and to understand where the discipline International Relations lies today vis-à-vis game theory.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
A sequence of “inner equations” attached to certain perturbations of the McMillan map was considered in [MSS09], their solutions were used in that article to measure an exponentially small separatrix splitting. We prove here all the results relative to these equations which are necessary to complete the proof of the main result of [MSS09]. The present work relies on ideas from resurgence theory: we describe the formal solutions, study the analyticity of their Borel transforms and use ´Ecalle’s alien derivations to measure the discrepancy between different Borel-Laplace sums.