82 resultados para Site classification

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular stair climbing has well-documented health dividends, such as increased fitness and strength, weight loss and reduced body fat, improved lipid profiles and reduced risk of osteoporosis. The general absence of barriers to participation makes stair climbing an ideal physical activity (PA) for health promotion. Studies in the US and the UK have consistently shown that interventions to increase the accumulation of lifestyle PA by climbing stairs rather than using the escalators are effective. However, there are no previous in Catalonia. This project tested one message for their ability to prompt travelers on the Montjuïc site to choose the stairs rather than the escalator when climbing up the Monjuïc hill. One standard message, " Take the stairs! 7 minutes of stair climbing a day protects your heart" provided a comparison with previous research done in the UK. Translated into Catalan and Spanish, it was presented on a poster positioned at the point of choice between the stairs and the escalator. The study used a quasi-experimental, interrupted time series design. Travelers, during several and specific hours on two days of the week, were coded for stair or escalator use, gender, age, ethnic status, presence of accompanying children or bags by one observer. Overall, the intervention resulted in a 81% increase in stair climbing. In the follow-up period without messages, stair climbing dropped out to baseline levels. This preliminary study showed a significant effect on stair use. However, caution is needed since results are based on a small sample and, only a low percentage of the sample took the stairs at baseline or the intervention phase . Future research on stair use in Catalonia should focus on using bigger samples, different sites (metro stations, airports, shopping centers, etc) , different messages and techniques to promote stair climbing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es va realitzar el II Workshop en Tomografia Computeritzada (TC) a Monells. El primer dia es va dedicar íntegrament a la utilització del TC en temes de classificació de canals porcines, i el segon dia es va obrir a altres aplicacions del TC, ja sigui en animals vius o en diferents aspectes de qualitat de la carn o els productes carnis. Al workshop hi van assistir 45 persones de 12 països de la UE. The II workshop on the use of Computed Tomography (CT) in pig carcass classification. Other CT applications: live animals and meat technology was held in Monells. The first day it was dedicated to the use of CT in pig carcass classification. The segond day it was open to otehr CT applications, in live animals or in meat and meat products quality. There were 45 assistants of 12 EU countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical studies on the determinants of industrial location typically use variables measured at the available administrative level (municipalities, counties, etc.). However, this amounts to assuming that the effects these determinants may have on the location process do not extent beyond the geographical limits of the selected site. We address the validity of this assumption by comparing results from standard count data models with those obtained by calculating the geographical scope of the spatially varying explanatory variables using a wide range of distances and alternative spatial autocorrelation measures. Our results reject the usual practice of using administrative records as covariates without making some kind of spatial correction. Keywords: industrial location, count data models, spatial statistics JEL classification: C25, C52, R11, R30

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desenvolupament d'una aplicació web per a la recollida i classificació d'informació en entorns virtuals d'interacció síncrona: xat + classificació automàtica de les converses generades + les seves pròpies interaccions en funció d'unes categories existents + fitxers log.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El projecte comporta l'anàlisi i la creació d'una nova versió del lloc web de la secció sindical de Comissions Obreres (CCOO) del Grup Banc Sabadell partint d'un disseny centrat en l'usuari.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente TFC tiene dos objetivos principales: 1. Determinar el grado de adaptación de las metodologías ágiles al desarrollo de proyectos web puesta en contexto con la adaptación de las metodologías clásicas a este mismo entorno. 2. Realizar una clasificación de las metodologías de desarrollo de software según el grado de adaptación a los proyectos web.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos