Combining classification techniques to define topo-climatic landscapes


Autoria(s): Serra Díaz, Josep M.
Contribuinte(s)

Institut de Ciència i Tecnologia Ambientals

Universitat Autònoma de Barcelona

Ninyerola i Casals, Miquel

Data(s)

01/06/2008

Resumo

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Formato

35 pàg.

1428677 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/13271

Idioma(s)

eng

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i l'institut i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Paisatge -- Classificació #Paisatge -- Ecologia #Cartografia -- Processament de dades #Conglomerats (Matemàtica), Anàlisi de #574 - Ecologia general i biodiversitat
Tipo

info:eu-repo/semantics/masterThesis